Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Experimental Neurobiology ; : 362-375, 2019.
Article in English | WPRIM | ID: wpr-763768

ABSTRACT

Chronic traumatic encephalopathy (CTE) is a distinct neurodegenerative disease that associated with repetitive head trauma. CTE is neuropathologically defined by the perivascular accumulation of abnormally phosphorylated tau protein in the depths of the sulci in the cerebral cortices. In advanced CTE, hyperphosphorylated tau protein deposits are found in widespread regions of brain, however the mechanisms of the progressive neurodegeneration in CTE are not fully understood. In order to identify which proteomic signatures are associated with CTE, we prepared RIPA-soluble fractions and performed quantitative proteomic analysis of postmortem brain tissue from individuals neuropathologically diagnosed with CTE. We found that axonal guidance signaling pathwayrelated proteins were most significantly decreased in CTE. Immunohistochemistry and Western blot analysis showed that axonal signaling pathway-related proteins were down regulated in neurons and oligodendrocytes and neuron-specific cytoskeletal proteins such as TUBB3 and CFL1 were reduced in the neuropils and cell body in CTE. Moreover, oligodendrocyte-specific proteins such as MAG and TUBB4 were decreased in the neuropils in both gray matter and white matter in CTE, which correlated with the degree of axonal injury and degeneration. Our findings indicate that deregulation of axonal guidance proteins in neurons and oligodendrocytes is associated with the neuropathology in CTE. Together, altered axonal guidance proteins may be potential pathological markers for CTE.


Subject(s)
Humans , Axons , Blotting, Western , Brain Injury, Chronic , Brain , Cell Body , Cerebral Cortex , Craniocerebral Trauma , Cytoskeletal Proteins , Gray Matter , Immunohistochemistry , Neurodegenerative Diseases , Neurons , Neuropathology , Neuropil , Oligodendroglia , tau Proteins , White Matter
2.
Korean Journal of Neurotrauma ; : 38-42, 2019.
Article in English | WPRIM | ID: wpr-759973

ABSTRACT

Trigeminal neuralgia is caused by compression of trigeminal nerve root and it leads to demyelination gradually. It was almost idiopathic and occurred unexpected. The upper cervical spinal cord contains the spinal trigeminal tract and nucleus. Fibers with cell bodies in the trigeminal ganglion enter in the upper pons and descend caudally to C2 level. We experienced a rare patient with facial pain, which was paroxysmal attack with severe pain after a clear event, cervical spinal injury (C2). So, this case reminds us of a possible cause of trigeminal neuralgia after a trauma of the head and neck.


Subject(s)
Humans , Cell Body , Cervical Cord , Demyelinating Diseases , Facial Pain , Head , Neck , Odontoid Process , Pons , Spinal Cord , Spinal Injuries , Trigeminal Ganglion , Trigeminal Nerve , Trigeminal Neuralgia
3.
Chonnam Medical Journal ; : 83-89, 2018.
Article in English | WPRIM | ID: wpr-714587

ABSTRACT

The primary cilium is an organelle which consists of a microtubule in the core and a surrounding cilia membrane, and has long been recognized as a “vestigial organelle”. However, new evidence demonstrates that the primary cilium has a notable effect on signal transduction in the cell and is associated with some genetic and non-genetic diseases. In the kidney, the primary cilium protrudes into the Bowman's space and the tubular lumen from the apical side of epithelial cells. The length of primary cilia is dynamically altered during the normal cell cycle, being shortened by retraction into the cell body at the entry of cell division and elongated at differentiation. Furthermore, the length of primary cilia is also dynamically changed in the cells, as a result and/or cause, during the progression of various kidney diseases including acute kidney injury and chronic kidney disease. Notably, recent data has demonstrated that the shortening of the primary cilium in the cell is associated with fragmentation, apart from retraction into the cell body, in the progression of diseases and that the fragmented primary cilia are released into the urine. This data reveals that the alteration of primary cilia length could be related to the progression of diseases. This review will consider if primary cilia length alteration is associated with the progression of kidney diseases and if the length of tissue primary cilia and the presence or increase of cilia proteins in the urine is indicative of kidney diseases.


Subject(s)
Acute Kidney Injury , Cell Body , Cell Cycle , Cell Division , Cilia , Epithelial Cells , Ischemia , Kidney Diseases , Kidney , Membranes , Microtubules , Organelles , Renal Insufficiency, Chronic , Signal Transduction
4.
Experimental Neurobiology ; : 82-89, 2017.
Article in English | WPRIM | ID: wpr-212102

ABSTRACT

Translationally controlled tumor protein (TCTP) is a cytosolic protein with microtubule stabilization and calcium-binding activities. TCTP is expressed in most organs including the nervous system. However, detailed distribution and functional significance of TCTP in the brain remain unexplored. In this study, we investigated the global and subcellular distributions of TCTP in the mouse brain. Immunohistochemical analyses with anti-TCTP revealed that TCTP was widely distributed in almost all regions of the brain including the cerebral cortex, thalamus, hypothalamus, hippocampus, and amygdala, wherein it was localized in axon tracts and axon terminals. In the hippocampus, TCTP was prominently localized to axon terminals of the perforant path in the dentate gyrus, the mossy fibers in the cornu ammonis (CA)3 region, and the Schaffer collaterals in the CA1 field, but not in cell bodies of granule cells and pyramidal neurons, and in their dendritic processes. Widespread distribution of TCTP in axon tracts and axon terminals throughout the brain suggests that TCTP is likely involved in neurotransmitter release and/or maintaining synaptic structures in the brain, and that it might have a role in maintaining synaptic functions and synaptic configurations important for normal cognitive, stress and emotional functions.


Subject(s)
Animals , Mice , Amygdala , Axons , Brain , Cell Body , Cerebral Cortex , Cognition , Cytosol , Dentate Gyrus , Hippocampus , Hypothalamus , Immunohistochemistry , Microtubules , Nervous System , Neurons , Neurotransmitter Agents , Perforant Pathway , Presynaptic Terminals , Pyramidal Cells , Thalamus
5.
Korean Journal of Physical Anthropology ; : 29-38, 2017.
Article in English | WPRIM | ID: wpr-197572

ABSTRACT

CD44 is a transmembrane protein that acts as a receptor for an adhesion molecule, hyaluronic acid. The type of cells expressing CD44 and roles of CD44 are still controversial and need to be elucidated. The aim of the present study was to examine the type of cells expressing CD44 and the changes in their distribution in the retina and the cerebellum of the developing and adult chicken. Embryonic day 14 (E14) and post-hatch day 90 (P90) chickens were used in this study. CD44-immunoreactive (ir) cells were observed both in the retina and the cerebellum of the two developmental stages examined. In the retina of E14, CD44-ir cells were mainly located in the nerve fiber layer. In adults, most of the CD44-ir cells were in the nerve fiber layer and some were dispersed in other layers of the retina. In the cerebellum of E14, CD44-ir cells were distributed throughout the cerebellar cortex, including the external and internal granular layers. CD44-ir cells were more frequently found in the cerebellum of P90 adult chickens than in that of E14 embryos. At higher magnification, CD44-ir cells showed ramified cytoplasmic processes irradiating from their cell bodies. In the retina and in the cerebellum of all ages examined, double staining showed that most of the CD44-ir cells also expressed RCA-1, a marker of microglia. In contrast to that, at the same locations, GFAP and CD44 were not co-expressed in cells. When the adult retina was stimulated by LPS, CD44 immunoreactivity increased, and CD44-ir cells were also RCA-1-positive. The present results indicated that CD44 was expressed in microglia of the retina and the cerebellum of the developing and adult chicken even in normal conditions, and microglial CD44 expression was increased upon LPS stimulation.


Subject(s)
Adult , Humans , Cell Body , Cerebellar Cortex , Cerebellum , Chickens , Cytoplasm , Embryonic Structures , Hyaluronic Acid , Microglia , Nerve Fibers , Retina
6.
The Korean Journal of Parasitology ; : 643-652, 2017.
Article in English | WPRIM | ID: wpr-16096

ABSTRACT

Calreticulin (CALR), a multifunctional protein thoroughly researched in mammals, comprises N-, P-, and C-domain and has roles in calcium homeostasis, chaperoning, clearance of apoptotic cells, cell adhesion, and also angiogenesis. In this study, the spatial and temporal expression patterns of the Opisthorchis viverrini CALR gene were analyzed, and calcium-binding and chaperoning properties of recombinant O. viverrini CALR (OvCALR) investigated. OvCALR mRNA was detected from the newly excysted juvenile to the mature parasite by RT-PCR while specific antibodies showed a wide distribution of the protein. OvCALR was localized in tegumental cell bodies, testes, ovary, eggs, Mehlis’ gland, prostate gland, and vitelline cells of the mature parasite. Recombinant OvCALR showed an in vitro suppressive effect on the thermal aggregation of citrate synthase. The recombinant OvCALR C-domain showed a mobility shift in native gel electrophoresis in the presence of calcium. The results imply that OvCALR has comparable function to the mammalian homolog as a calcium-binding molecular chaperone. Inferred from the observed strong immunostaining of the reproductive tissues, OvCALR should be important for reproduction and might be an interesting target to disrupt parasite fecundity. Transacetylase activity of OvCALR as reported for calreticulin of Haemonchus contortus could not be observed.


Subject(s)
Female , Antibodies , Calcium , Calreticulin , Cell Adhesion , Cell Body , Citrate (si)-Synthase , Eggs , Electrophoresis , Fertility , Haemonchus , Homeostasis , In Vitro Techniques , Mammals , Molecular Chaperones , Opisthorchis , Ovary , Ovum , Parasites , Prostate , Reproduction , RNA, Messenger , Testis , Vitellins
7.
Biomolecules & Therapeutics ; : 231-238, 2017.
Article in English | WPRIM | ID: wpr-151384

ABSTRACT

Myelin is a specialized structure of the nervous system that both enhances electrical conductance and insulates neurons from external risk factors. In the central nervous system, polarized oligodendrocytes form myelin by wrapping processes in a spiral pattern around neuronal axons through myelin-related gene regulation. Since these events occur at a distance from the cell body, post-transcriptional control of gene expression has strategic advantage to fine-tune the overall regulation of protein contents in situ. Therefore, many research interests have been focused to identify RNA binding proteins and their regulatory mechanism in myelinating compartments. Fragile X mental retardation protein (FMRP) is one such RNA binding protein, regulating its target expression by translational control. Although the majority of works on FMRP have been performed in neurons, it is also found in the developing or mature glial cells including oligodendrocytes, where its function is not well understood. Here, we will review evidences suggesting abnormal translational regulation of myelin proteins with accompanying white matter problem and neurological deficits in fragile X syndrome, which can have wider mechanistic and pathological implication in many other neurological and psychiatric disorders.


Subject(s)
Axons , Cell Body , Central Nervous System , Fragile X Mental Retardation Protein , Fragile X Syndrome , Gene Expression , Myelin Proteins , Myelin Sheath , Nervous System , Neuroglia , Neurons , Oligodendroglia , Risk Factors , RNA-Binding Proteins , White Matter
8.
Tissue Engineering and Regenerative Medicine ; (6): 279-286, 2017.
Article in English | WPRIM | ID: wpr-644004

ABSTRACT

Recent investigations consider adipose-derived stemcells (ASCs) as a promising source of stemcells for clinical therapies. To obtain functional cells with enhanced cytoskeleton and aligned structure, mechanical stimuli are utilized during differentiation of stem cells to the target cells. Since function of muscle cells is associated with cytoskeleton, enhanced structure is especially essential for these cells when employed in tissue engineering. In this study by utilizing a custom-made device, effects of uniaxial tension (1Hz, 10% stretch) on cytoskeleton, cell alignment, cell elastic properties, and expression of smooth muscle cell (SMC) genes in ASCs are investigated.Due to proper availability ofASCs, results can be employed in cardiovascular engineeringwhen production of functional SMCs in arterial reconstruction is required. Results demonstrated that cells were oriented after 24 hours of cyclic stretch with aligned pseudo-podia. Staining of actin filaments confirmed enhanced polymerization and alignment of stress fibers. Such phenomenon resulted in stiffening of cell body which was quantified by atomic force microscopy (AFM). Expression of SM α-actin and SM22 α-actin as SMC associated genes were increased after cyclic stretch while GAPDH was considered as internal control gene. Finally, it was concluded that application of cyclic stretch on ASCs assists differentiation to SMC and enhances functionality of cells.


Subject(s)
Actin Cytoskeleton , Cell Body , Cytoskeleton , Microscopy, Atomic Force , Muscle Cells , Muscle, Smooth , Myocytes, Smooth Muscle , Polymerization , Polymers , Stem Cells , Stress Fibers , Tissue Engineering
9.
Asian Pacific Journal of Tropical Medicine ; (12): 655-658, 2014.
Article in English | WPRIM | ID: wpr-820637

ABSTRACT

OBJECTIVE@#To explore mechanism of nduction of fibroblast to corneal endothelial cell.@*METHODS@#Rabbit conjunctiva fibroblasts were used as feeder cells, rabbit oral mucosa epithelial cells were used as seed cells, and human denuded amniotic membrane was used as carrier to establish tissue engineering corneal endothelium. The transformation effect was observed.@*RESULTS@#As concentration of mitomycin C increased, cell survival rate gradually decreased, cell proliferation was obviously inhibited when concentration≥25 μg/mL; 5 days after being treated by 5 μg/mL mitomycin C, cell body was enlarged and extended without cell fusion, however after being treated by 0.5 μg/mL mitomycin C, cell body was significantly proliferated and gradually fused; after 3 weeks of culture, stratified epithelium appeared on rabbit oral mucosa epithelial cells, differentiation layers were 4-5 and were well differentiated, the morphology was similar to corneal endothelial cells; Under electron microscope, surface layer of cells were polygonal, tightly connected to another with microvilli on the border, there was hemidesmosome between basal cells and human denuded amniotic membrane.@*CONCLUSIONS@#Fibroblast cells have the potential of multi-directional differentiation, effective induction can promote emergence of intercellular desmosomes between seed cells and emergence of epithelial surface microvilli, and differentiate to the corneal endothelial cell. However, clinical application still needs more research and safety evaluation.


Subject(s)
Animals , Humans , Rabbits , Amnion , Cell Biology , Cell Body , Cell Differentiation , Physiology , Cell Proliferation , Cell Survival , Endothelium, Corneal , Cell Biology , Epithelial Cells , Cell Biology , Fibroblasts , Cell Biology , Mitomycin , Pharmacology , Mouth Mucosa , Cell Biology
10.
Journal of the Korean Radiological Society ; : 851-853, 1992.
Article in English | WPRIM | ID: wpr-158136

ABSTRACT

Wallerian degeneration is well known as the anterograde degeneration of axon and their accompanying myelin sheath from injury to the proximal portion of the axon or its cell body. The most common cause of wallerian degeneration is cerebral infarction. Authors experienced three patients with old hemispheric infarct with typical wallerian degeneration in the brain stem, which was demonstrated by magnetic resonance imaging (MRI) in two cases and CT in one case. This report demonstrates the wallerian degeneration in the corticospinal tract on the MRI and CT with the brief review of the literatures.


Subject(s)
Humans , Axons , Brain Stem , Brain , Cell Body , Cerebral Infarction , Magnetic Resonance Imaging , Myelin Sheath , Pyramidal Tracts , Wallerian Degeneration
SELECTION OF CITATIONS
SEARCH DETAIL