Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese journal of integrative medicine ; (12): 61-68, 2023.
Article in English | WPRIM | ID: wpr-971318

ABSTRACT

OBJECTIVE@#To explore the effect of electroacupuncture (EA) intervention on the vasoconstriction of cerebral artery smooth muscle cells after cerebral infarction.@*METHODS@#Male Wistar rats were randomly divided into 3 groups by a random number table: the model group (n=24), the EA group (n=24), and the normal group (n=6). The model and the EA groups were divided into different time subgroups at 0.5, 1, 3, and 6 h after middle cerebral artery occlusion (MCAO), with 6 rats in each subgroup. MCAO model was established using intraluminal suture occlusion method. The EA group was given EA treatment at acupoint Shuigou (GV 26) instantly after MCAO for 20 min. The contents of cerebrovascular smooth muscle MLCK, the 3 subunits of myosin light chain phosphatase (MLCP) MYPT1, PP1c-δ and M20, as well as myosin-ATPase activity were detected using immunohistochemistry and Western blotting.@*RESULTS@#The overall expression level of the MYPT1 and PP1c-δ in the model group was significantly higher (P<0.01). After EA intervention, the 0.5 h group expression level was close to that of the normal group (P>0.05), and the other subgroups were still significantly higher than the normal group (P<0.01). After EA intervention, the expression level of each subgroup was significantly lower than the corresponding model group. There was a significant difference between the 0.5 and 1 h subgroups (P<0.01), while a difference was also observed between the 3 and 6 h subgroups (P<0.05). The dynamic change rule gradually increased with the prolongation of infarction time within 6 h after infarction.@*CONCLUSION@#EA intervention can inhibit contraction of cerebral vascular smooth muscle cells and regulate smooth muscle relaxation by regulating MLCK pathway.


Subject(s)
Rats , Male , Animals , Rats, Wistar , Electroacupuncture , Cerebral Infarction/metabolism , Muscle, Smooth , Acupuncture Points , Brain Ischemia/therapy
2.
Journal of Korean Medical Science ; : 44-54, 1996.
Article in English | WPRIM | ID: wpr-53062

ABSTRACT

Phospholipase C (PLC) and related enzymes in signal transduction system are closely linked to cellular damage in ischemic encephalopathy. This study was undertaken to elucidate the time sequential changes of PLC isoenzymes (beta and gamma) in vulnerable areas of hippocampus in global ischemia and infarcted area in focal infarction. Mongolian gerbils were used because of their susceptibility to ischemic encephalopathy and divided into the following groups: the bilateral ischemia with various reperfusion periods group, unilateral progressive ischemia group, and focal ischemia group induced by infusion of iron particles through the femoral artery. The changes of PLC isoenzymes were observed immunohistochemically and matched with morphological changes. In the global ischemia with reperfusion group, the changes were most significant in hippocampus. Sequential changes of neurons such as red neurons at an early stage progressed to pknotic neurons at a later stage were noted with typical delayed neuronal damage in the corns ammonis (CA) 1 subfield of hippocampus. Red neurons and pyknotic neurons as well as intracytoplasmic inclusion in 3 to 24 hours of reperfusion showed loss of PLC isoenzymes as well as tubulin. The changes of PLC expression were corresponding to the degeneration of neurons with no discernible time sequential changes in remaining neurons. In the unilateral hemispheric progressive ischemia group, ischemic damage was far more marked and extensive with no selective injury pattern according to time and location. At 1 day, there was diffuse vacuolization and necrosis of neuropil with a loss of neuron. Admixed surviving neurons and vacuolated neuropil showed increased reaction to anti-PLC antibodies, which could be either an evidence of protein synthesis responding to ischemic insult or an artifactual change. Focal ischemia group showed time sequential changes of blood vessels and white blood cells with necrosis of surrounding tissue. Degenerating hippocampal neurons in infarction also showed a strong positive reaction to anti-PLC antibody, which was most likely due to condensation of cytoplasm rather than increased synthesis. This study showed different changes of PLC expression in global ischemic encephalopathy with reperfusion, progressive ischemia, and focal infarction, which suggested different pathophysiologic mechanism between these conditions.


Subject(s)
Female , Male , Animals , Brain Ischemia/metabolism , Cerebral Infarction/metabolism , Gene Expression , Gerbillinae , Hippocampus/enzymology , Immunoenzyme Techniques , Isoenzymes/biosynthesis , Neurons/enzymology , Type C Phospholipases/biosynthesis , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL