Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Chinese Journal of Biotechnology ; (12): 4563-4579, 2023.
Article in Chinese | WPRIM | ID: wpr-1008042

ABSTRACT

In order to investigate the molecular mechanism of silk/threonine protein kinase (STK)-mediated blue light response in the algal Chlamydomonas reinhardtii, phenotype identification and transcriptome analysis were conducted for C. reinhardtii STK mutant strain crstk11 (with an AphvIII box reverse insertion in stk11 gene coding region) under blue light stress. Phenotypic examination showed that under normal light (white light), there was a slight difference in growth and pigment contents between the wild-type strain CC5325 and the mutant strain crstk11. Blue light inhibited the growth and chlorophyll synthesis in crstk11 cells, but significantly promoted the accumulation of carotenoids in crstk11. Transcriptome analysis showed that 860 differential expression genes (DEG) (559 up-regulated and 301 down-regulated) were detected in mutant (STK4) vs. wild type (WT4) upon treatment under high intensity blue light for 4 days. After being treated under high intensity blue light for 8 days, a total of 1 088 DEGs (468 upregulated and 620 downregulated) were obtained in STK8 vs. WT8. KEGG enrichment analysis revealed that compared to CC5325, the crstk11 blue light responsive genes were mainly involved in catalytic activity of intracellular photosynthesis, carbon metabolism, and pigment synthesis. Among them, upregulated genes included psaA, psaB, and psaC, psbA, psbB, psbC, psbD, psbH, and L, petA, petB, and petD, as well as genes encoding ATP synthase α, β and c subunits. Downregulated genes included petF and petJ. The present study uncovered that the protein kinase CrSTK11 of C. reinhardtii may participate in the blue light response of algal cells by mediating photosynthesis as well as pigment and carbon metabolism, providing new knowledge for in-depth analysis of the mechanism of light stress resistance in the algae.


Subject(s)
Chlamydomonas reinhardtii/genetics , Photosynthesis/genetics , Plants/metabolism , Protein Kinases , Threonine/metabolism , Carbon/metabolism , Serine/metabolism
2.
Chinese Journal of Biotechnology ; (12): 2495-2502, 2021.
Article in Chinese | WPRIM | ID: wpr-887815

ABSTRACT

Raspberry ketones have important therapeutic properties such as anti-influenza and prevention of diabetes. In order to obtain raspberry ketone from Chlamydomonas reinhardtii, two enzymes catalyzing the last two steps of raspberry ketone synthesis, i.e. 4-coumaryl-CoA ligase (4CL) and polyketide synthase (PKS1), were fused using a glycine-serine-glycine (GSG) tripeptide linker to construct an expression vector pChla-4CL-PKS1. The fusion gene 4CL-PKS1 driven by a PSAD promoter was transformed into a wild-type (CC125) and a cell wall-deficient C. reinhardtii (CC425) by electroporation. The results showed the recombinant C. reinhardtii strain CC125 and CC425 with 4CL-PKS1 produced raspberry ketone at a level of 6.7 μg/g (fresh weight) and 5.9 μg/g (fresh weight), respectively, both were higher than that of the native raspberry ketone producing plants (2-4 μg/g).


Subject(s)
Acyl Coenzyme A , Butanones , Chlamydomonas reinhardtii/genetics , Ligases , Polyketide Synthases
3.
J Biosci ; 2007 Mar; 32(2): 261-70
Article in English | IMSEAR | ID: sea-110746

ABSTRACT

We report here the isolation of a homologue of the potential anti-apoptotic gene, defender against apoptotic death (dad1 )from Chlamydomonas reinhardtii cells.Using polymerase chain reaction (PCR),we investigated its expression in the execution process of programmed cell death (PCD)in UV-C exposed dying C.reinhardtii cells.Reverse- transcriptase (RT)-PCR showed that C.reinhardtii dad1 amplification was drastically reduced in UV-C exposed dying C.reinhardtii cells.We connect the downregulation of dad1 with the upregulation of apoptosis protease activating factor-1 (APAF-1)and the physiological changes that occur in C.reinhardtii cells upon exposure to 12 J/m 2 UV-C in order to show a reciprocal relationship between proapoptotic and inhibitor of apoptosis factors.The temporal changes indicate a correlation between the onset of cell death and dad1 downregulation.The sequence of the PCR product of the cDNA encoding the dad1 homologue was aligned with the annotated dad1 (C_20215)from the Chlamydomonas database (http://genome.jgi-psf.org:8080/annotator/servlet/jgi.annotation.Annotation?pDb=chlre2); Annotation?pDb=chlre2 );this sequence was found to show 100% identity,both at the nucleotide and amino acid level. The 327 bp transcript showed an open reading frame of 87 amino acid residues.The deduced amino acid sequence of the putative C.reinhardtii DAD1 homologue showed 54% identity with Oryza sativa, 56 identity with Drosophila melanogaster, 66% identity with Xenopus laevis, and 64% identity with Homo sapiens,Sus scrofa,Gallus gallus,Rattus norvegicus and Mus musculus.


Subject(s)
Amino Acid Sequence , Animals , Apoptosis/radiation effects , Apoptosis Regulatory Proteins/metabolism , Apoptotic Protease-Activating Factor 1/metabolism , Base Sequence , Blotting, Western , Chlamydomonas reinhardtii/genetics , DNA Primers/genetics , Down-Regulation/radiation effects , Molecular Sequence Data , Reverse Transcriptase Polymerase Chain Reaction , Sequence Alignment , Sequence Analysis, DNA , Ultraviolet Rays
4.
Genet. mol. res. (Online) ; 2(1): 169-177, Mar. 2003.
Article in English | LILACS | ID: lil-417613

ABSTRACT

Microorganisms with large genomes are commonly the subjects of single-round partial sequencing of cDNA, generating expressed sequence tags (ESTs). Usually there is a great distance between gene discovery by EST projects and submission of amino acid sequences to public databases. We analyzed the relationship between available ESTs and protein sequences and used the sequences available in the secondary database, clusters of orthologous groups (COG), to investigate ESTs from eight microorganisms of medical and/or economic relevance, selecting for candidate ESTs that may be further pursued for protein characterization. The organisms chosen were Paracoccidioides brasiliensis, Dictyostelium discoideum, Fusarium graminearum, Plasmodium yoelii, Magnaporthe grisea, Emericella nidulans, Chlamydomonas reinhardtii and Eimeria tenella, which have more than 10,000 ESTs available in dbEST. A total of 77,114 protein sequences from COG were used, corresponding to 3,201 distinct genes. At least 212 of these were capable of identifying candidate ESTs for further studies (E. tenella). This number was extended to over 700 candidate ESTs (C. reinhardtii, F. graminearum). Remarkably, even the organism that presents the highest number of ESTs corresponding to known proteins, P. yoelii, showed a considerable number of candidate ESTs for protein characterization (477). For some organisms, such as P. brasiliensis, M. grisea and F. graminearum, bioinformatics has allowed for automatic annotation of up to about 20 of the ESTs that did not correspond to proteins already characterized in the organism. In conclusion, 4093 ESTs from these eight organisms that are homologous to COG genes were selected as candidates for protein characterization


Subject(s)
Animals , Databases, Protein , Expressed Sequence Tags , Sequence Analysis, Protein , Chlamydomonas reinhardtii/genetics , Dictyostelium/genetics , Eimeria tenella/genetics , Emericella/genetics , Fusarium/genetics , Genome , Magnaporthe/genetics , Paracoccidioides/genetics , Plasmodium yoelii/genetics , Proteins/genetics , Sequence Homology, Amino Acid
5.
Article in English | IMSEAR | ID: sea-111152

ABSTRACT

Parent-specific, randomly amplified polymorphic DNA (RAPD) markers were obtained from total genomic DNA of Chlamydomonas reinhardtii. Such parent-specific RAPD bands (genomic fingerprints) segregated uniparentally (through mt+) in a cross between a pair of polymorphic interfertile strains of Chlamydomonas (C. reinhardtii and C. minnesotti), suggesting that they originated from the chloroplast genome. Southern analysis mapped the RAPD-markers to the chloroplast genome. One of the RAPD-markers, "P2" (1.6 kb) was cloned, sequenced and was fine mapped to the 3 kb region encompassing 3' end of 23S, full 5S and intergenic region between 5S and psbA. This region seems divergent enough between the two parents, such that a specific PCR designed for a parental specific chloroplast sequence within this region, amplified a marker in that parent only and not in the other, indicating the utility of RAPD-scan for locating the genomic regions of sequence divergence. Remarkably, the RAPD-product, "P2" seems to have originated from a PCR-amplification of a much smaller (about 600 bp), but highly repeat-rich (direct and inverted) domain of the 3 kb region in a manner that yielded no linear sequence alignment with its own template sequence. The amplification yielded the same uniquely "sequence-scrambled" product, whether the template used for PCR was total cellular DNA, chloroplast DNA or a plasmid clone DNA corresponding to that region. The PCR product, a "unique" new sequence, had lost the repetitive organization of the template genome where it had originated from and perhaps represented a "complex path" of copy-choice replication.


Subject(s)
Animals , Base Sequence , Chlamydomonas reinhardtii/genetics , Chloroplasts/genetics , DNA/genetics , DNA Primers , Genome, Plant , Molecular Sequence Data , Random Amplified Polymorphic DNA Technique , Repetitive Sequences, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL