Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
2.
Electron. j. biotechnol ; 18(2): 128-133, Mar. 2015. ilus, graf, tab
Article in English | LILACS | ID: lil-745581

ABSTRACT

Background The production of biofuels from renewable energy sources is one of the most important issues in biotechnology today. The process is known to generate various by-products, for example glycerol that is obtained in the making of biodiesel from rapeseed oil. Crude glycerol may be utilized in many ways, including microbial conversion to 1,3-propanediol. The main drawback of that technology is the use of high concentrations of glycerol, which inhibits the growth of bacterial cells. Results This study investigated the impact of crude glycerol on Clostridium butyricum DSP1 and its ability to adapt to an environment of high osmotic pressure. It was found that a crude glycerol concentration of up to 70 g/L did not have an inhibitory effect on C. butyricum DSP1. Adaptation procedures involving the passage of metabolically active biomass from a fermentation medium with a lower concentration of crude glycerol to one with a greater substrate concentration allowed breaking the barrier of high osmotic pressure (150 g/L crude glycerol) and receiving a 1,3-PD concentration of 74 g/L in a batch culture operation. The work looked into intracellular modifications shown by proteomic profiling in order to explain the mechanisms underlying the response and adaptation of bacterial cells exposed to unfavorable environmental conditions. Conclusions This study of the effect of glycerol on the growth and metabolism of C. butyricum DSP1 demonstrated that the maximum substrate concentrations that do not inhibit the metabolic activity of bacterial cells are 90 g/L and 70 g/L for pure and crude glycerol, respectively.


Subject(s)
Adaptation, Physiological , Clostridium butyricum/growth & development , Clostridium butyricum/metabolism , Glycerol/metabolism , Osmotic Pressure , Propylene Glycols , Stress, Physiological , Proteins/analysis , Environment , Biofuels , Fermentation , Batch Cell Culture Techniques , Glycerol/analysis
3.
Electron. j. biotechnol ; 17(6): 322-328, Nov. 2014. graf, tab
Article in English | LILACS | ID: lil-730265

ABSTRACT

Background The production of biofuels from renewable energy sources is one of the most important issues in industrial biotechnology today. The process is known to generate various by-products, for example crude glycerol, which is obtained in the making of biodiesel from rapeseed oil. Crude glycerol may be utilized in many ways, including microbial conversion to 1,3-propanediol (1,3-PD), a raw material for the synthesis of polyesters and polyurethanes. Results The paper presents results of a study on the synthesis of 1,3-propanediol from crude glycerol by a repeated batch method with the use of Clostridium butyricum DSP1. Three cycles of fermentation medium replacement were carried out. The final concentration of 1,3-PD was 62 g/L and the maximum productivity, obtained during the second cycle, reached 1.68 g/L/h. Additionally, experiments conducted in parallel to the above involved using the entire quantity of the culture broth removed from the bioreactor to inoculate successive portions of fermentation media containing crude glycerol at concentrations of 80 g/L and 100 g/L. Under those conditions, the maximum 1,3-PD concentrations were 43.2 g/L and 54.2 g/L. Conclusions The experiments proved that by using a portion of metabolically active biomass as inoculum for another fermentation formula it is possible to eliminate the stage of inoculum growth and thereby reduce the length of the whole operation. Additionally, that strategy avoids the phase of microbial adaptation to a different source of carbon such as crude glycerol, which is more difficult to utilize, thus improving the kinetic parameters of 1,3-PD production.


Subject(s)
Propylene Glycols/metabolism , Clostridium butyricum/metabolism , Glycerol/metabolism , Stress, Physiological , Chromatography, High Pressure Liquid , Bioreactors , Environment , Biofuels , Fermentation , Batch Cell Culture Techniques
4.
Braz. j. microbiol ; 45(3): 892-901, July-Sept. 2014. ilus, graf, tab
Article in English | LILACS | ID: lil-727018

ABSTRACT

In response to demand from industry for microorganisms with auspicious biotechnological potential, a worldwide interest has developed in bacteria and fungi isolation. Microorganisms of interesting metabolic properties include non-pathogenic bacteria of the genus Clostridium, particularly C. acetobutylicum, C. butyricum and C. pasteurianum. A well-known property of C. butyricum is their ability to produce butyric acid, as well as effectively convert glycerol to 1,3-propanediol (38.2 g/L). A conversion rate of 0.66 mol 1,3-propanediol/mol of glycerol has been obtained. Results of the studies described in the present paper broaden our knowledge of characteristic features of C. butyricum specific isolates in terms of their phylogenetic affiliation, fermentation capacity and antibacterial properties.


Subject(s)
Biotechnology/methods , Butyric Acid/metabolism , Clostridium butyricum/metabolism , Glycerol/metabolism , Industrial Microbiology , Propylene Glycols/metabolism , Biotransformation , Cluster Analysis , Clostridium butyricum/classification , Clostridium butyricum/growth & development , Clostridium butyricum/isolation & purification , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Phylogeny , /genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL