Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Chinese Journal of Biotechnology ; (12): 2158-2189, 2023.
Article in Chinese | WPRIM | ID: wpr-981196

ABSTRACT

The synthesis of fine chemicals using multi-enzyme cascade reactions is a recent hot research topic in the field of biocatalysis. The traditional chemical synthesis methods were replaced by constructing in vitro multi-enzyme cascades, then the green synthesis of a variety of bifunctional chemicals can be achieved. This article summarizes the construction strategies of different types of multi-enzyme cascade reactions and their characteristics. In addition, the general methods for recruiting enzymes used in cascade reactions, as well as the regeneration of coenzyme such as NAD(P)H or ATP and their application in multi-enzyme cascade reactions are summarized. Finally, we illustrate the application of multi-enzyme cascades in the synthesis of six bifunctional chemicals, including ω-amino fatty acids, alkyl lactams, α, ω-dicarboxylic acids, α, ω-diamines, α, ω-diols, and ω-amino alcohols.


Subject(s)
Amino Acids , Biocatalysis , Amino Alcohols , Coenzymes/metabolism , Diamines
2.
Chinese Journal of Biotechnology ; (12): 632-649, 2022.
Article in Chinese | WPRIM | ID: wpr-927733

ABSTRACT

The redox biosynthesis system has important applications in green biomanufacturing of chiral compounds. Formate dehydrogenase (FDH) catalyzes the oxidation of formate into carbon dioxide, which is associated with the reduction of NAD(P)+ into NAD(P)H. Due to this property, FDH is used as a crucial enzyme in the redox biosynthesis system for cofactor regeneration. Nevertheless, the application of natural FDH in industrial production is hampered by low catalytic efficiency, poor stability, and inefficient coenzyme utilization. This review summarized the structural characteristics and catalytic mechanism of FDH, as well as the advances in protein engineering of FDHs toward improved enzyme activity, catalytic efficiency, stability and coenzyme preference. The applications of using FDH as a coenzyme regeneration system for green biomanufacturing of chiral compounds were summarized.


Subject(s)
Catalysis , Coenzymes/metabolism , Formate Dehydrogenases/metabolism , NAD/metabolism , Protein Engineering
3.
Indian J Med Microbiol ; 2011 Jul-Sept; 29(3): 302-304
Article in English | IMSEAR | ID: sea-143839

ABSTRACT

This study aims in identifying MBLs particularly Zn requiring Molecular Class B enzymes produced by Pseudomonas aeruginosa and Acinetobacter baumannii .The resistance by these organisms are in a rise against all antibiotics including carbapenems and no prescribed CLSI guidelines is available for detecting them. Clinical isolates antibiotic susceptibility was determined by number of phenotypic tests by addition of 50mM of 10 μl zinc as cofactor for metallo beta lactamase production along with 0.5M ETDA of 5μl (930 μg per disk) plain disks. Increase in zone size of the meropenem -EDTA disk compared to the meropenem disk without EDTA was recorded positive. For Zn requiring MBLs zone towards both disks of EDTA and Zn along with meropenem is detected by DDST.


Subject(s)
Acinetobacter Infections/microbiology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/enzymology , Acinetobacter baumannii/isolation & purification , Coenzymes/metabolism , Humans , Microbial Sensitivity Tests/methods , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/isolation & purification , Zinc/metabolism , beta-Lactam Resistance , beta-Lactamases/metabolism
4.
Indian J Med Microbiol ; 2011 Jul-Sept; 29(3): 275-279
Article in English | IMSEAR | ID: sea-143833

ABSTRACT

Purpose: The emergence and spread of zinc-dependent carbapenem resistance has become a diagnostic challenge for clinical microbiologists. The objective of the present study was to screen zinc-dependent carbapenemase activity in clinical isolates of family Enterobacteriaceae. Materials and Methods: A total of 102 multidrug-resistant organisms (MDROs), non-repeat clinical isolates of family Enterobacteriaceae from two tertiary care centres in Delhi, were screened for carbapenemase production by a modified Hodge test (MHT) and additionally by a re-modified Hodge test, EDTA double disc synergy test, and combined disc test (or disc enhancement test) to determine zinc dependence of carbapenemases harbouring bacteria. Results: Of the total 102 clinical isolates (June through November 2010), 91 were from urine and 11 were from blood specimens. The isolates were obtained from patients visiting the outpatient department (18 isolates), admitted in non-ICU inpatient care units (74 isolates) and patients admitted in ICUs (4 isolates). MHT identified 92 (90.2%) isolates as carbapenemases producers. Among those found negative for MHT (n=10), metallo-beta-lactamases (MBLs) activity was demonstrated through the EDTA disc diffusion synergy test and the combined disc test in 8 and 9 isolates respectively. A total of 63 (61.7%) isolates demonstrated MBL activity despite in vitro sensitivity to Imipenem. Conclusions: The study demonstrated that supplementing the MHT with at least one of the screening methods increases the likelihood of picking up such isolates that may be missed by the MHT. The study also demonstrates the wide-spread presence of MBLs in Enterobacteriaceae members from patients visiting hospitals in east Delhi.


Subject(s)
Bacterial Proteins/metabolism , Bacteriological Techniques/methods , Coenzymes/metabolism , Drug Resistance, Multiple, Bacterial , Enterobacteriaceae/enzymology , Enterobacteriaceae/isolation & purification , Enterobacteriaceae Infections/microbiology , Hospitals , Humans , Immunoassay/methods , India , Zinc/metabolism , beta-Lactamases/metabolism
5.
Indian J Med Microbiol ; 2011 Jul-Sept; 29(3): 275-279
Article in English | IMSEAR | ID: sea-143830

ABSTRACT

Purpose: The emergence and spread of zinc-dependent carbapenem resistance has become a diagnostic challenge for clinical microbiologists. The objective of the present study was to screen zinc-dependent carbapenemase activity in clinical isolates of family Enterobacteriaceae. Materials and Methods: A total of 102 multidrug-resistant organisms (MDROs), non-repeat clinical isolates of family Enterobacteriaceae from two tertiary care centres in Delhi, were screened for carbapenemase production by a modified Hodge test (MHT) and additionally by a re-modified Hodge test, EDTA double disc synergy test, and combined disc test (or disc enhancement test) to determine zinc dependence of carbapenemases harbouring bacteria. Results: Of the total 102 clinical isolates (June through November 2010), 91 were from urine and 11 were from blood specimens. The isolates were obtained from patients visiting the outpatient department (18 isolates), admitted in non-ICU inpatient care units (74 isolates) and patients admitted in ICUs (4 isolates). MHT identified 92 (90.2%) isolates as carbapenemases producers. Among those found negative for MHT (n=10), metallo-beta-lactamases (MBLs) activity was demonstrated through the EDTA disc diffusion synergy test and the combined disc test in 8 and 9 isolates respectively. A total of 63 (61.7%) isolates demonstrated MBL activity despite in vitro sensitivity to Imipenem. Conclusions: The study demonstrated that supplementing the MHT with at least one of the screening methods increases the likelihood of picking up such isolates that may be missed by the MHT. The study also demonstrates the wide-spread presence of MBLs in Enterobacteriaceae members from patients visiting hospitals in east Delhi.


Subject(s)
Bacterial Proteins/metabolism , Bacteriological Techniques/methods , Coenzymes/metabolism , Drug Resistance, Multiple, Bacterial , Enterobacteriaceae/enzymology , Enterobacteriaceae/isolation & purification , Enterobacteriaceae Infections/microbiology , Hospitals , Immunoassay/methods , India , Zinc/metabolism , beta-Lactamases/metabolism
6.
Indian J Biochem Biophys ; 1989 Apr; 26(2): 63-73
Article in English | IMSEAR | ID: sea-27728

ABSTRACT

Thermal inactivation of horse liver alcohol dehydrogenase (LADH) exhibits the following biphasic kinetics A = Afast.e-Kfast.t + Aslow.e-Kslow.t Where A is the per cent residual activity at time t,Afast and Aslow are amplitudes (expressed as % of initial activity) and kfast and kslow first-order rate constants of the fast and slow phases, respectively. For apoenzyme, Afast = Aslow = 50% of the initial activity under all conditions of temperature and pH. On the addition of a substrate or coenzyme ligand, there is a ligand concentration-dependent increase in per cent Aslow and a decrease in kslow. At sufficiently high ligand concentration, the entire time-course of inactivation can be described as a single exponential decay. The variations of per cent Aslow and of kslow with ligand concentration are consistent with the existence of two binding sites of different ligand affinities. Inactivation of LADH by excess EDTA also exhibits a similar biphasic kinetics with Afast = Aslow = 50% of the initial activity. Addition of ethanol or NAD+ brings about a concentration-dependent decrease in kfast and kslow without affecting amplitudes of the two phases. The NAD+ concentration-dependence of this decrease is consistent with a single dissociation constant for the coenzyme. Inactivation of yeast alcohol dehydrogenase by heat or excess EDTA can be represented as a single exponential decay of activity under all conditions of temperature and pH in the absence as well as presence of ethanol or NAD+. Implications of these results for the molecular symmetry of the two oligomeric enzymes in solution are discussed.


Subject(s)
Alcohol Dehydrogenase/metabolism , Animals , Binding Sites , Coenzymes/metabolism , Horses , Kinetics , Liver/enzymology , Saccharomyces cerevisiae/enzymology , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL