Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Ciênc. rural (Online) ; 52(2): e20201054, 2022. tab, graf
Article in English | VETINDEX, LILACS | ID: biblio-1286057

ABSTRACT

Understanding the genetic diversity and overcoming genotype-by-environment interaction issues is an essential step in breeding programs that aims to improve the performance of desirable traits. This study estimated genetic diversity and applied genotype + genotype-by-environment (GGE) biplot analyses in cotton genotypes. Twelve genotypes were evaluated for fiber yield, fiber length, fiber strength, and micronaire. Estimation of variance components and genetic parameters was made through restricted maximum likelihood and the prediction of genotypic values was made through best linear unbiased prediction. The modified Tocher and principal component analysis (PCA) methods, were used to quantify genetic diversity among genotypes. GGE biplot was performed to find the best genotypes regarding adaptability and stability. The Tocher technique and PCA allowed for the formation of clusters of similar genotypes based on a multivariate framework. The GGE biplot indicated that the genotypes IMACV 690 and IMA08 WS were highly adaptable and stable for the main traits in cotton. The cross between the genotype IMACV 690 and IMA08 WS is the most recommended to increase the performance of the main traits in cotton crops.


Compreender a diversidade genética e contornar os problemas causados pela interação genótipos por ambientes é uma etapa importante em programas de melhoramento. Este estudo teve como objetivo estimar a diversidade genética e aplicar a metodologia de biplot genótipo + genótipo por ambiente (GGE biplot) em doze genótipos de algodão avaliados quanto ao rendimento da fibra, comprimento da fibra, resistência da fibra e micronaire. A estimativa dos componentes de variância e dos parâmetros genéticos foi feita através do método da máxima verossimilhança restrita e a predição dos valores genotípicos por meio da melhor predição linear não enviesada. Os métodos de Tocher modificado e análise de componentes principais (PCA) foram utilizados para quantificar a diversidade genética entre os genótipos. O método GGE biplot foi conduzido para encontrar os melhores genótipos em relação à adaptabilidade e estabilidade. As técnicas de Tocher e PCA permitiram a formação de clusters de genótipos semelhantes com base em uma estrutura multivariada. O GGE biplot indicou que os genótipos IMACV 690 e IMA08 WS foram altamente adaptáveis e estáveis para as principais características do algodão. O cruzamento dentre os genótipos IMACV 690 e IMA08 WS é o mais recomendado para aumentar o desempenho das principais características na cultura do algodão.


Subject(s)
Gossypium/genetics , Cotton Fiber/analysis , Gene-Environment Interaction , Genotype , Plant Breeding/methods
2.
Biosci. j. (Online) ; 37: e37007, Jan.-Dec. 2021. ilus, tab, graf
Article in English | LILACS | ID: biblio-1358471

ABSTRACT

The objective of this work was to analyze the genetic diversity using conventional methods and artificial neural networks among 12 colored fiber cotton genotypes, using technological characteristics of the fiber and productivity in terms of cottonseed and cotton fiber yield. The experiment was conducted in an experimental area located at Fazenda Capim Branco, belonging to the Federal University of Uberlândia, in the city of Uberlândia, Minas Gerais. Twelve genotypes of colored fiber cotton were evaluated, 10 from the Cotton Genetic Improvement Program (PROMALG): UFUJP - 01, UFUJP - 02, UFUJP - 05, UFUJP - 08, UFUJP - 09, UFUJP - 10, UFUJP - 11, UFUJP - 13, UFUJP - 16, UFUJP - 17 and two commercial cultivars: BRS Rubi (RC) and BRS Topázio (TC). The experimental design used was complete randomized block (CRB) with three replications. The following evaluations were carried out at full maturation: yield of cottonseed (kg ha-1) and the technological characteristics, which include, fiber length, micronaire, maturation, length uniformity, short fiber index, elongation and strength, using the HVI (High volume instrument) device. Genetic dissimilarity was measured using the generalized Mahalanobis distance and after obtaining the dissimilarity matrix, the genotypes were grouped using a hierarchical clustering method (UPGMA). A discriminant analysis and the Kohonen Self-Organizing Map (SOM) by Artificial Neural Networks (ANN's) were performed through computational intelligence. SOM was able to detect differences and organize the similarities between accesses in a more coherent way, forming a larger number of groups, when compared to the method that uses the Mahalanobis matrix. It was also more accurate than the discriminant analysis, since it made it possible to differentiate groups more coherently when comparing their phenotypic behavior. The methods that use computational intelligence proved to be more efficient in detecting similarity, with Kohonen's Self-Organizing Map being the most adequate to classify and group cotton genotypes.


Subject(s)
Genetic Variation , Artificial Intelligence , Neural Networks, Computer , Gossypium , Cotton Fiber/analysis
SELECTION OF CITATIONS
SEARCH DETAIL