Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Indian J Exp Biol ; 2003 Nov; 41(11): 1226-32
Article in English | IMSEAR | ID: sea-61146

ABSTRACT

Apart from infectious or viral hepatitis, other most common non-infectious causes of hepatitis are alcohol, cholestatic, drugs and toxic materials. The most common mode that leads to liver injuries is antituberculosis drug-induced hepatitis. The severity of drug-induced liver injury varies from minor nonspecific changes in hepatic structure to fulminant hepatic failure, cirrhosis and liver cancer. Patients receiving antitubercular drug frequently develop acute or chronic hepatitis. The time required for the metabolites to reach hepatotoxic levels is much earlier with isoniazid plus rifampicin treatment than isoniazid alone and this has been shown to be synergistic rather than additive. Antituberculosis drug (ATT)-inducible cytochrome P-4502E1 (CYP2E1) is constitutively expressed in the liver. Recent studies show that polymorphism of the N-acetyltransferase 2 (NAT2) genes and glutathione-S-transferase (GST) are the major susceptibility risk factors for ATT-induced hepatitis. The hepatic NAT and GST are involved in the metabolism of several carcinogenic arylamines and drugs. The NAT2 enzyme has a genetic polymorphism in human. N-acetyltransferase 2 genes (NAT2) have been identified to be responsible for genetic polymorphism of slow and rapid acetylation in humans. Slow acetylators of NAT2 prove to develop more severe hepatotoxicity than rapid acetylators making it a significant risk factor. Deficiency of GST activity, because of homozygous null mutations at GSTM1 and GSTT1 loci, may modulate susceptibility to drug and xenobiotic-induced hepatotoxicity. Polymorphisms at GSTM1, GSTT1 and NAT2 loci had been linked to various forms of liver injury, including hepatocellular carcinoma.


Subject(s)
Antitubercular Agents/adverse effects , Arylamine N-Acetyltransferase/genetics , Cytochrome P-450 CYP2E1/antagonists & inhibitors , Genetic Predisposition to Disease/genetics , Glutathione Transferase/genetics , Chemical and Drug Induced Liver Injury/blood , Humans , Polymorphism, Genetic , Risk Factors , Tuberculosis/drug therapy
2.
The Korean Journal of Internal Medicine ; : 27-33, 1999.
Article in English | WPRIM | ID: wpr-153280

ABSTRACT

OBJECTIVES: The hepatotoxicity of acetaminophen is not a result of the parent compound but is mediated by its reactive metabolite N-acetyl-p-benzoquinone imine. Cytochrome P4502E1 (CYP2E1) is the principal enzyme of this biotransformation, which accounts for approximately 52% of the bioactivation in human microsomes. Recently, chlormethiazole a sedative drug, is reported to be an efficient inhibitor of CYP2E1 activity in human beings. In this study we wished to evaluate whether chlormethiazole, an inhibitor of CYP2E1, could prevent acetaminophen-induced liver injury in mice. METHODS: Acetaminophen, at doses ranging from 200 to 600 mg/kg, was injected into the peritoneum of female C57BL/6 inbred mice fasted for four hours. Chlormethiazole (60 mg/kg) or 5% dextrose water was given 30 min before or 2 h after acetaminophen. Serum aminotransferase activities, histologic index score, survival rate and hepatic malondialdehyde levels were compared. RESULTS: Pretreatment with chlormethiazole 30 min before 400 mg/kg of acetaminophen completely inhibited acetaminophen-induced liver injury (median 118.5 U/L, range 75 to 142 vs. 14,070 U/L, range 5980 to 27,680 for AST; 49 U/L, range 41 to 64 vs. 15,330 U/L, range 13,920 to 15,940 for ALT). In mice receiving chlormethiazole 2 h after acetaminophen, the mean AST and ALT levels were also less elevated, reaching only 20% of the value of acetaminophen-only group. These protective effects were confirmed histologically. Whereas more than 50% of mice died at 500 mg/kg of acetaminophen, all the mice pretreated with chlormethiazole survived at the same dose. CONCLUSION: Chlormethiazole effectively reduces acetaminophen-induced liver injury in mice. Further studies are needed to assess its role in humans.


Subject(s)
Female , Humans , Mice , Acetaminophen/toxicity , Acetaminophen/metabolism , Acetaminophen/antagonists & inhibitors , Analgesics, Non-Narcotic/toxicity , Analgesics, Non-Narcotic/metabolism , Analgesics, Non-Narcotic/antagonists & inhibitors , Animals , Chlormethiazole/pharmacology , Cytochrome P-450 CYP2E1/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Liver/metabolism , Liver/injuries , Liver/drug effects , Mice, Inbred C57BL , /pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL