Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
2.
Braz. j. med. biol. res ; 39(5): 603-610, May 2006. ilus, tab, graf
Article in English | LILACS | ID: lil-425789

ABSTRACT

Endochondral calcification involves the participation of matrix vesicles (MVs), but it remains unclear whether calcification ectopically induced by implants of demineralized bone matrix also proceeds via MVs. Ectopic bone formation was induced by implanting rat demineralized diaphyseal bone matrix into the dorsal subcutaneous tissue of Wistar rats and was examined histologically and biochemically. Budding of MVs from chondrocytes was observed to serve as nucleation sites for mineralization during induced ectopic osteogenesis, presenting a diameter with Gaussian distribution with a median of 306 ± 103 nm. While the role of tissue-nonspecific alkaline phosphatase (TNAP) during mineralization involves hydrolysis of inorganic pyrophosphate (PPi), it is unclear how the microenvironment of MV may affect the ability of TNAP to hydrolyze the variety of substrates present at sites of mineralization. We show that the implants contain high levels of TNAP capable of hydrolyzing p-nitrophenylphosphate (pNPP), ATP and PPi. The catalytic properties of glycosyl phosphatidylinositol-anchored, polidocanol-solubilized and phosphatidylinositol-specific phospholipase C-released TNAP were compared using pNPP, ATP and PPi as substrates. While the enzymatic efficiency (k cat/Km) remained comparable between polidocanol-solubilized and membrane-bound TNAP for all three substrates, the k cat/Km for the phosphatidylinositol-specific phospholipase C-solubilized enzyme increased approximately 108-, 56-, and 556-fold for pNPP, ATP and PPi, respectively, compared to the membrane-bound enzyme. Our data are consistent with the involvement of MVs during ectopic calcification and also suggest that the location of TNAP on the membrane of MVs may play a role in determining substrate selectivity in this micro-compartment.


Subject(s)
Animals , Female , Male , Rats , Alkaline Phosphatase/metabolism , Bone Matrix/metabolism , Cytoplasmic Vesicles/physiology , Diaphyses/enzymology , Ossification, Heterotopic/enzymology , Chondrocytes/ultrastructure , Diaphyses/ultrastructure , Microscopy, Electron, Transmission , Ossification, Heterotopic/pathology , Rats, Wistar
3.
Medicina (B.Aires) ; 60 Suppl 2: 51-4, 2000.
Article in Spanish | LILACS, BINACIS | ID: biblio-1165059

ABSTRACT

Dendritic cells (DCs) are the most potent antigen presenting cells and the only ones capable of inducing primary cytotoxic immune responses. We found that DCs secrete a population of membrane vesicles, called exosomes. Exosomes are 60-80 nm vesicles of endocytic origin. The protein composition of exosomes was subjected to a systematic proteomic analysis. Besides MHC and co-stimulatory molecules, exosomes bear several adhesion proteins, most likely involved in their specific subjected to targeting. We also found that exosomes accumulate several cytosolic factors, probably involved in their endosomal biogenesis. Like DCs, exosomes induced immune responses in vivo. Indeed, a single injection of DC-derived exosomes sensitized with tumor peptides induced potent anti tumor immune responses in mice and the eradication of established tumors. Tumor-specific cytotoxic T lymphocytes were found in the spleen of exosome-treated mice, and the anti tumor effect of exosomes was sensitive to in vivo depletion of CD8+ T cells. These results show that exosomes induce potent anti tumor effects in vivo, and strongly support the implementation of human DC-derived exosomes for cancer immunotherapy.


Subject(s)
Humans , Animals , Rabbits , Dendritic Cells/physiology , Cytoplasmic Vesicles/physiology , Immunotherapy/methods , Neoplasms/therapy , Endosomes/physiology , Dendritic Cells/ultrastructure , Antigen Presentation , Cytoplasmic Vesicles/immunology
SELECTION OF CITATIONS
SEARCH DETAIL