Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Int. j. morphol ; 34(1): 237-243, Mar. 2016. ilus
Article in English | LILACS | ID: lil-780500

ABSTRACT

The gills of Ichthyophis bannanicus have yet to be investigated. This paper describes the external morphological features of the gills of mature I. bannanicus embryos exhibiting three pairs of gills on their neck region. Each gill is composed of an axis and filaments. In newly released embryos, the filaments and the axis form at approximately 90° relative to each other; eventually, this angle decreases and the color of the gill fades. The filaments on the axis are arranged alternately, and their spacing varies. The mid-pair of gills is significantly longer by nearly twofold than the front and rear pairs. Likewise, the lengths of the front and rear pairs of gills are not significantly different (P >0.05); for the same pair of gills, the lengths of the left and right parts are not significantly different (P >0.05). The number of filaments is greater in the mid-pair of gills than in the front and rear pairs (P <0.05); the number of filaments in the front pair is not significantly different from that of the rear pair (P >0.05); the number of filaments in the left part does not significantly differ from that of the right parts (P >0.05). Results showed that the gills of I. bannanicus embryo are more similar to those of other species in Ichthyophiidae than to those of species in other families.


Las branquias del Ichthyophis bannanicus aún no se han investigado. En este trabajo se describen las características morfológicas externas de las branquias de embriones maduros de I. bannanicus, que exhiben tres pares de branquias en la región del cuello. Cada branquia está compuesta de un eje y filamentos. En embriones recién liberados los filamentos y la forma del eje es de aproximadamente 90° respecto a la otra; finalmente, este ángulo disminuye y el color de las branquias se desvanece. Los filamentos en el eje están dispuestos en forma alternada y su separación varía. La media de par de branquias es significativamente más larga, por casi el doble que los pares anterior y posterior. Del mismo modo, las longitudes de la parte delantera y posterior de pares de branquias no son significativamente diferentes (p >0,05); para el mismo par de branquias, las longitudes de las partes izquierda y derecha no son significativamente diferentes (p >0,05). El número de filamentos es mayor en el par medio de branquias, que en la parte delantera y posterior de pares (p <0,05); el número de filamentos en el par frontal no es significativamente diferente de la del par trasero (p >0,05); el número de filamentos en la parte izquierda no varía significativamente del de las partes derechas (p >0,05). Los resultados mostraron que las branquias del embrión de I. bannanicus son más similares a los de otras especies en Ichthyophiidae que de otras especies.


Subject(s)
Animals , Amphibians/anatomy & histology , Embryo, Nonmammalian/anatomy & histology , Gills/anatomy & histology
2.
Neotrop. ichthyol ; 13(1): 123-136, Jan-Mar/2015. tab, graf
Article in English | LILACS | ID: lil-744512

ABSTRACT

This comparative study of gill morphometrics in near-term embryos of freshwater stingray potamotrygonids examines gill dimensions in relation to neonatal lifestyle and habitat. In embryos of the potamotrygonids Paratrygon aiereba, Plesiotrygon iwamae, Potamotrygon motoro, Potamotrygon orbignyi, and cururu ray Potamotrygon sp. the number and length of filaments, total gill surface area, mass-specific surface area, water-blood diffusion distance, and anatomical diffusion factor were analysed. In all potamotrygonids, the 3rd branchial arch possessed a larger respiratory surface than the other gill arches. Larger embryos had more gill surface area and large spiracles, which are necessary to maintain the high oxygen uptake needed due to their larger body size. However, the higher mass-specific gill surface area observed in near-term embryos may be advantageous because neonates can use hypoxic environments as refuges against predators, as well as catch small prey that inhabit the same environment. As expected from their benthic mode of life, freshwater stingrays are sluggish animals compared to pelagic fishes. However, based on gill respiratory morphometry (such as gill area, mass-specific gill area, the water-blood diffusion barrier, anatomical diffusion factor, and relative opening of the spiracle), subtypes of lifestyles can be observed corresponding to: active, intermediate, and sluggish species according to Gray's scale.


Este estudo realizado com embriões a termo de arraias de água doce (Potamotrygonidae) compara e analisa as dimensões branquiais em relação ao estilo de vida e habitat dos neonatos. Nos embriões de Paratrygon aiereba, Plesiotrygon iwamae, Potamotrygon motoro, Potamotrygon orbignyi e Potamotrygon sp. (arraia cururu) foram analisados número e comprimento dos filamentos, área branquial, área superficial branquial massa-específica, barreira de difusão água-sangue e fator de difusão anatômico. Em todos os potamotrigonídeos estudados, o 3º arco branquial possui uma superfície respiratória maior que os demais arcos. Embriões de espécies de maior porte possuem grandes espiráculos e maior área de superfície branquial. Isso ajuda a manter a taxa de absorção de oxigênio proporcional ao requerimento do animal. No entanto, a grande área de superfície branquial massa-específica observadas nos embriões a termo pode ser vantajosa, pois os neonatos podem usar ambientes hipóxicos como refúgios contra predadores, bem como capturar pequenas presas que habitam o mesmo ambiente. Devido ao modo de vida bentônico, as arraias de água doce são nadadoras lentas comparadas aos peixes pelágicos. No entanto, com base na morfometria branquial (área de superfície branquial, área branquial massa-específica, barreira de difusão água-sangue, fator de difusão anatômico e abertura relativa do espiráculo), subtipos de estilos de vida podem ser observados: ativas, intermediárias e lentas, conforme escala definida por Gray.


Subject(s)
Animals , Hypoxia/embryology , Elasmobranchii/anatomy & histology , Embryo, Nonmammalian/anatomy & histology , Species Specificity
3.
Biocell ; 32(3): 259-263, Dec. 2008. ilus, tab
Article in English | LILACS | ID: lil-541101

ABSTRACT

As the key component of many hemoproteins (heme-containing proteins), heme is involved in a broad range of biological processes. Enzymes required for heme biosynthesis and degradation pathways are evolutionarily conserved. While heme metabolism has been studied extensively, the expression of heme metabolism enzymes during development has not been described. Here, we report that all heme biosynthases and two heme oxygenases, which initiate heme degradation, are dynamically expressed during Xenopus embryonic development. All heme synthases, with the exception of aminolevulinic acid synthase 2, are maternally expressed. At neurula stage, heme synthases are expressed in the developing neural tissue and in migrating neural crest cells. At the swimming tadpole stage, expression of heme synthases can be detected in multiple lineages, including eyes, neural crest cells, developing central nervous system, ventral blood island, pronephron, and pronephric tubule. Similar to heme synthases, heme oxygenases are expressed maternally. Zygotic expression of heme oxygenases is mainly restricted to the developing neural and neural crest lineages. Unlike heme synthases, heme oxygenases are not expressed in the ventral blood island and are expressed at a very low level in the pronephron and pronephric tubule. This indicates that heme metabolism may play important roles during development.


Subject(s)
Humans , Animals , Embryonic Development , Embryo, Nonmammalian/anatomy & histology , Embryo, Nonmammalian/physiology , Ferrochelatase/genetics , Ferrochelatase/metabolism , Gene Expression Regulation, Developmental , Heme/genetics , Heme/metabolism , Heme Oxygenase (Decyclizing)/genetics , Heme Oxygenase (Decyclizing)/metabolism , In Situ Hybridization , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , Xenopus/embryology , Xenopus/genetics , Xenopus/metabolism
4.
Braz. j. biol ; 68(4): 889-895, Nov. 2008. ilus
Article in English | LILACS | ID: lil-504510

ABSTRACT

The embryonic development of freshwater triclads is mainly known from studies of species of Dendrocoelum, Planaria, Polycelis, and, more recently, Schmidtea. The present study characterizes the development of Girardia tigrina (Girard, 1850) by means of optical microcopy using glycol methacrylate semi-thin sections. 94 cocoons were collected in the period from laying to hatching, with intervals of up to twenty-four hours. The sequence of morphological changes occurring in the embryo permitted the identification of nine embryonic stages. At the time of cocoon laying, numerous embryos were dispersed among many yolk cells, with a rigid capsule covering the entire cocoon. In the first stage (approx. up to 6 hours after cocoon laying), yolk cells and embryonic cells showed random distribution. Stage II (between 12 and 24 hours after cocoon laying) is characterized by aggregates of blastomeres, which later aggregate forming an enteroblastula. Approximately 2 days after cocoon laying (stage III), formation of the embryonic epidermis and embryonic digestive system took place, the latter degenerating during the subsequent stage. Stage V (until the fourth day) is characterized by the formation of the definitive epidermis. Between 4 and 6 days after laying, organogenesis of the definitive inner organs starts (stage VI). Approximately 14 days after laying (stage IX), formation of the nervous system is completed. At this stage, the embryo shows similar characteristics to those of newly hatched juveniles. The hatching of Girardia tigrina occurs in the period between twelve to twenty-two days after cocoon laying.


O desenvolvimento embrionário dos tricladidos é conhecido, fundamentalmente, por estudos realizados em espécies de Dendrocoelum, Planaria, Polycelis e, mais recentemente, Schmidtea. O presente estudo descreve o desenvolvimento embrionário de Girardia tigrina (Girard, 1850), a partir de análises realizadas em cortes histológicos seriados e semifinos de glicol-metacrilato, ao microscópio óptico. Noventa e quatro casulos foram coletados no período entre a postura e a eclosão, em intervalos de até vinte e quatro horas. A seqüência das modificações morfológicas no embrião permitiu a identificação de nove estágios embrionários. Na postura dos casulos, envoltos por uma cápsula rígida, observam-se numerosos embriões dispersos entre grande quantidade de células vitelinas. No estágio I (aproximadamente até 6 horas após a postura), as células vitelinas e as embrionárias mostram uma distribuição aleatória. O estágio II (entre 12 e 24 horas após a postura) caracteriza-se pela formação de agrupamentos de blastômeros, os quais posteriormente formam uma enteroblástula. Aproximadamente dois dias após a postura (estágio III), ocorre a formação da epiderme e do sistema digestivo embrionário, sendo que este último degenera no estágio seguinte. O estágio V (até o quarto dia após a postura) caracteriza-se pela formação da epiderme definitiva. Entre o quarto e o sexto dia posteriores à postura, começa a organogênese dos órgãos internos definitivos (estágio VI). Aproximadamente catorze dias após a postura (estágio IX), completa-se a formação do sistema nervoso. Neste estágio, o embrião já apresenta características similares aos espécimes juvenis. A eclosão de Girardia tigrina ocorre entre doze e vinte e dois dias após a postura dos casulos.


Subject(s)
Animals , Embryo, Nonmammalian/embryology , Platyhelminths/embryology , Embryonic Development , Embryo, Nonmammalian/anatomy & histology , Platyhelminths/anatomy & histology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL