Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Arq. bras. cardiol ; 80(5): 483-494, May 2003. ilus, graf
Article in English, Portuguese | LILACS | ID: lil-336446

ABSTRACT

OBJECTIVE: To determine whether arginine vasopressin releases endothelium-derived nitric oxide (EDNO) from the epicardial coronary artery. METHODS: We studied segments of canine left circumflex coronary arteries suspended in organ chambers to measure isometric force. The coronary artery segments were contracted with prostaglandin F2alpha (2 x 10-6M) and exposed to a unique, strong arginine vasopressin concentration (10-6M) or titrated concentrations (10-9 a 10-5 M). RESULTS: The unique dose of arginine vasopressin concentration (10-6M) induced transient, but significant (p<0.05), relaxation in arterial segments with endothelium, and an increase, not significant, in tension in arteries without endothelium. Endothelium-dependent relaxation to arginine vasopressin was inhibited by Ng-monomethyl-L-arginine (L-NMMA, 10-5M) or N G-nitro-L-arginine (L-NOARG) (10-4M), 2 inhibitors of nitric oxide synthesis from L-arginine. Exogenous L-arginine (10-4M), but not D-arginine (10-4M), reversed the inhibitory effect of L-NMMA on vasopressin-mediated vasorelaxation. Endothelium dependent relaxation to vasopressin was also reversibly inhibited by the vasopressin V1-receptor blocker d(CH2)5Try(Me) arginine vasopressin (10-6M) (n=6, P<0.05). CONCLUSION: Vasopressin acts through V1 endothelial receptors to stimulate nitric oxide release from L-arginine


Subject(s)
Animals , Male , Female , Dogs , Arginine Vasopressin/pharmacology , Coronary Vessels/drug effects , Nitric Oxide/metabolism , Pericardium/drug effects , Receptors, Vasopressin/metabolism , Vasoconstrictor Agents/pharmacology , Arginine/pharmacology , Coronary Vessels/metabolism , Endothelium , Endothelium-Dependent Relaxing Factors/antagonists & inhibitors , Pericardium/metabolism , Vasodilation
2.
São Paulo med. j ; 117(5): 197-204, Sept. 1999. tab, graf
Article in English | LILACS | ID: lil-250191

ABSTRACT

CONTEXT: The exact mechanism involved in changes in blood pressure and peripheral vascular resistance during pregnancy is unknown. OBJECTIVE:To evaluate the importance of endothelium-derivated relaxing factor (EDRF) and its main component, nitric oxide, in blood pressure and vascular reactivity in pregnant rats. DESIGN: Clinical trial in experimentation animals. SETTING: University laboratory of Pharmacology. SAMPLE: Female Wistar rats with normal blood pressure, weight (152 to 227 grams) and age (90 to 116 days). INTERVENTION: The rats were divided in to four groups: pregnant rats treated with L-NAME (13 rats); pregnant control rats (8 rats); virgin rats treated with L-NAME (10 rats); virgin control rats (12 rats). The vascular preparations and caudal blood pressure were obtained at the end of pregnancy, or after the administration of L-NAME in virgin rats. MAIN MEASUREMENTS: The caudal blood pressure and the vascular response to acetylcholine in pre-contracted aortic rings, both with and without endothelium, and the effect of nitric oxide inhibition, Nw-L-nitro-arginine methyl-ester (L-NAME), in pregnant and virgin rats. The L-NAME was administered in the drinking water over a 10-day period. RESULTS: The blood pressure decreased in pregnancy. Aortic rings of pregnant rats were more sensitive to acetylcholine than those of virgin rats. After L-NAME treatment, the blood pressure increased and relaxation was blocked in both groups. The fetal-placental unit weight of the L-NAME group was lower than that of the control group. CONCLUSION: Acetylcholine-induced vasorelaxation sensitivity was greater in pregnant rats and that blood pressure increased after L-NAME administration while the acetylcholine-induced vasorelaxation response was blocked.


Subject(s)
Animals , Female , Pregnancy , Rats , Aorta/drug effects , Vasodilation/drug effects , Vasodilator Agents/pharmacology , Blood Pressure , Acetylcholine/pharmacology , NG-Nitroarginine Methyl Ester/pharmacology , Endothelium-Dependent Relaxing Factors/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Nitric Oxide/antagonists & inhibitors , Rats, Wistar
3.
Braz. j. med. biol. res ; 31(10): 1329-34, Oct. 1998. ilus, graf
Article in English | LILACS | ID: lil-223995

ABSTRACT

Early systemic arterial hypotension is a common clinical feature of Pseudomonas septicemia. To determine if Pseudomonas aeruginosa endotoxin induces the release of endothelium-derived nitric oxide (EDNO), an endogenous nitrovasodilator, segments of canine femoral, renal, hepatic, superior mesenteric, and left circumflex coronary arteries were suspended in organ chambers (physiological salt solution, 95 per cent O2/5 per cent CO2, pH 7.4, 37oC) to measure isometric force. In arterial segments contracted with 2 µM prostaglandin F2a, Pseudomonas endotoxin (lipopolysaccharide (LPS) serotype 10(Habs) from Pseudomonas aeruginosa (0.05 to 0.50 mg/ml)) induced concentration-dependent relaxation of segments with endothelium (P<0.05) but no significant change in tension of arteries without endothelium. Endothelium-dependent relaxation in response to Pseudomonas LPS occurred in the presence of 1 µM indomethacin, but could be blocked in the coronary artery with 10 µM NG-monomethyl-L-arginine (L-NMMA), a competitive inhibitor of nitric oxide synthesis from L-arginine. The inhibitory effect of L-NMMA on LPS-mediated vasorelaxation of the coronary artery could be reversed by exogenous 100 µM L-arginine but not by 100 µM D-arginine. These experiments indicate that Pseudomonas endotoxin induces synthesis of nitric oxide from L-arginine by the vascular endothelium. LPS-mediated production of EDNO by the endothelium, possibly through the action of constitutive nitric oxide synthase (NOSc), may decrease systemic vascular resistance and may be the mechanism of early hypotension characteristic of Pseudomonas septicemia.


Subject(s)
Animals , Dogs , Male , Female , Endothelium-Dependent Relaxing Factors , In Vitro Techniques , Lipopolysaccharides , Pseudomonas aeruginosa , Vasodilation , Vasodilator Agents , Coronary Vessels , Endothelium-Dependent Relaxing Factors/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Hypotension , Lipopolysaccharides/pharmacology , Nitric Oxide Synthase/antagonists & inhibitors , omega-N-Methylarginine/pharmacology , Sepsis
SELECTION OF CITATIONS
SEARCH DETAIL