Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Arq. bras. med. vet. zootec. (Online) ; 71(2): 553-562, mar.-abr. 2019. tab, ilus
Article in Portuguese | VETINDEX, LILACS | ID: biblio-1011281

ABSTRACT

As enzimas fibrinolíticas podem ser obtidas de micro-organismos por meio de processos fermentativos. O presente trabalho teve como objetivo avaliar a produção e extração integrada da protease fibrinolítica de Mucor subtilissimus UCP 1262 usando sistema de duas fases aquosas (SDFA). O processo integrado foi realizado para avaliar a produção, partição e recuperação da protease fibrinolítica, segundo planejamento experimental 23, utilizando como variáveis independentes a massa molar do polietileno glicol (PEG), a concentração do PEG e a concentração do sulfato de sódio. A maior atividade fibrinolítica (15,40U/mL) foi obtida na fase rica em sulfato de sódio no ensaio composto por 10% de sal e 18% de PEG 8000 (g/mol). Recuperações superiores a 80% foram obtidas. A protease fibrinolítica apresentou pH ótimo 7,0, estabilidade entre os pH 6,0 e 8,5, temperatura ótima 50°C, sendo estável de 10°C a 50°C. A enzima foi classificada como uma serino protease, com massa molecular de 52kDa. Como resultado, o processo é notavelmente eficaz para pré-purificar a protease fibrinolítica com baixo custo e rapidez significativa. Quando comparada a outras técnicas de produção e purificação isoladas, a fermentação extrativa é um processo digno a ser substituto das etapas iniciais de separação convencionais.(AU)


Fibrinolytic enzymes can be obtained from microorganisms through fermentative processes. The study aimed to evaluate the fibrinolytic protease production and integrated extraction from Mucor subtilissimus UCP 1262 by extractive fermentation using Aqueous Two-Phase Systems (ATPS). The integrated process was carried out to assess the production, partition and fibrinolytic enzyme recovery, according to a 2 3 -experimental design, using as independent variables Polyethylene glycol (PEG) molar mass, PEG and sodium sulphate concentration, concentration. The highest fibrinolytic activity (15.40U/mL) was obtained in sodium sulfate rich phase in the assay comprising of 10% of salt and 18% of PEG 8000 (g/mol). Yield greater than 80% was obtained. The fibrinolytic protease presented optimum pH 7.0 and stability between pH 6.0 and 8.5, and optimum temperature 50°C, stable between 10°C to 50°C. The enzyme was classified as a serine-protease with 52kDa of molecular weight. As a result, the process is remarkably effective to pre-purify the fibrinolytic protease with a low cost and significantly faster processing time. When compared to other isolated production and purification techniques the extractive fermentation is worthy of being a candidate to replace the initial stages of conventional separation processes.(AU)


Subject(s)
Fibrin/antagonists & inhibitors , Fibrinolytic Agents/isolation & purification , Mucor/enzymology , Enzyme Induction , Fermentation
2.
Electron. j. biotechnol ; 19(2): 1-8, Mar. 2016. ilus
Article in English | LILACS | ID: lil-782609

ABSTRACT

Background: Agro-wastes were used for the production of fibrinolytic enzyme in solid-state fermentation. The process parameters were optimized to enhance the production of fibrinolytic enzyme from Bacillus halodurans IND18 by statistical approach. The fibrinolytic enzyme was purified, and the properties were studied. Results: A two-level full factorial design was used to screen the significant factors. The factors such as moisture, pH, and peptone were significantly affected enzyme production and these three factors were selected for further optimization using central composite design. The optimum medium for fibrinolytic enzyme production was wheat bran medium containing 1% peptone and 80% moisture with pH 8.32. Under these optimized conditions, the production of fibrinolytic enzyme was found to be 6851 U/g. The fibrinolytic enzyme was purified by 3.6-fold with 1275 U/mg specific activity. The molecular mass of fibrinolytic enzyme was determined by sodium dodecyl sulphate polyacrylamide gel electrophoresis, and it was observed as 29 kDa. The fibrinolytic enzyme depicted an optimal pH of 9.0 and was stable at a range of pH from 8.0 to 10.0. The optimal temperature was 60°C and was stable up to 50°C. This enzyme activated plasminogen and also degraded the fibrin net of blood clot, which suggested its potential as an effective thrombolytic agent. Conclusions: Wheat bran was found to be an effective substrate for the production of fibrinolytic enzyme. The purified fibrinolytic enzyme degraded fibrin clot. The fibrinolytic enzyme could be useful to make as an effective thrombolytic agent.


Subject(s)
Bacillus/enzymology , Biodegradation, Environmental , Fibrinolytic Agents/isolation & purification , Industrial Waste , Temperature , Agriculture , Electrophoresis, Polyacrylamide Gel , Fermentation , Hydrogen-Ion Concentration
3.
Article in English | IMSEAR | ID: sea-19998

ABSTRACT

BACKGROUND & OBJECTIVE: Treatment of thromboembolic vascular disease has relied on anticoagulants. However, recognition that lysis of preformed fibrin could be accomplished in vivo by a process involving the conversion of inactive plasminogen to active plasmin enzyme led to an alternative enzyme-based approach. The drugs used for this therapy are called the fibrinolytic enzymes. In this study we attempted the production, purification and characterization of fibrinolytic enzyme from Bacillus sphaericus. METHODS: The seed was prepared in nutrient yeast salt medium (NYSM) in shake flask and organism was produced in 100 l pilot fermentor. Biomass was separated by centrifugation and crude protein was prepared by ammonium sulphate precipitation. Purification was done by ion exchange chromatography using Q sepharose followed by gel filtration chromatography using Sephacryl S- 300. Molecular weight was determined through HPLC. Fibrinolytic activity was assayed by fibrin plate method. RESULTS: The production method yielded 64 mg/l of the crude enzyme and after purification it was 6.3 mg/l. The molecular weight of the compound was 18.6 kDa. INTERPRETATION & CONCLUSION: The enzyme exhibited similar fibrinolytic activity as that of streptokinase, on fibrin plates that were devoid of plasminogen, suggesting that its fibrinolytic action is independent of plasminogen and it is not a plasminogen activator.


Subject(s)
Bacillus/enzymology , Bacterial Proteins/isolation & purification , Bioreactors , Fermentation , Fibrin/metabolism , Fibrinolytic Agents/isolation & purification
4.
Braz. j. med. biol. res ; 32(1): 39-43, Jan. 1999. graf
Article in English | LILACS | ID: lil-226210

ABSTRACT

The effect of several ions (Cl-, Na+, K+, Ca2+) on the rate of plasminogen (Pg) activation by recombinant staphylokinase (rSTA) is reported. Both monovalent and divalent ions affect the rate at which Pg is activated by rSTA, in a concentration-dependent manner (range 0-100 mM). In almost all cases, a decrease of the initial velocity of activation was observed. Cl- showed the most striking inhibitory effect at low concentrations (64 percent at 10 mM). However, in the presence of a fibrin surface, this inhibition was attenuated to 38 percent. Surprisingly, 10 mM Ca2+ enhanced the Pg activation rate 21 percent when a polymerized fibrin matrix was present. These data support the idea that ions can modulate the rate of Pg activation through a mechanism that may be associated with changes in the molecular conformation of the zymogen. This effect is strongly dependent on the presence of a fibrin clot


Subject(s)
Humans , Fibrinolytic Agents/metabolism , Ions , Metalloproteases/metabolism , Plasminogen/metabolism , Enzyme Activation/drug effects , Fibrinolytic Agents/isolation & purification , Metalloproteases/isolation & purification , Plasminogen/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL