Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Journal of Korean Medical Science ; : 1244-1246, 2011.
Article in English | WPRIM | ID: wpr-29139

ABSTRACT

Dopa-responsive dystonia (DRD) is a clinical syndrome characterized by childhood-onset dystonia and a dramatic response to relatively low doses of levodopa. However, patients with DRD can be misdiagnosed as cerebral palsy or spastic diplegia due to phenotypic variation. Here we report a young woman with DRD who were severely disabled and misdiagnosed as cerebral palsy for over 10 yr. A small dose of levodopa restored wheelchair-bound state to normality. However, thoracolumbar scoliosis has remained as a sequel due to late detection of DRD. Genetic analysis by using PCR-direct sequencing revealed a novel initiation codon mutation (c.1A>T; p.Met1Leu) in GTP cyclohydrolase 1 (GCH1) gene. Although it is known that DRD can be misdiagnosed as cerebral palsy, this case reinforces the importance of differential diagnosis of DRD from cerebral palsy.


Subject(s)
Adult , Female , Humans , Cerebral Palsy/diagnosis , Codon, Initiator , Diagnosis, Differential , Dystonic Disorders/diagnosis , GTP Cyclohydrolase/genetics , Levodopa/therapeutic use , Mutation , Sequence Analysis, DNA
2.
Experimental & Molecular Medicine ; : 271-275, 2008.
Article in English | WPRIM | ID: wpr-205430

ABSTRACT

Recently it was shown that single nucleotide polymorphisms (SNPs) can explain individual variation because of the small changes of the gene expression level and that the 50% decreased expression of an allele might even lead to predisposition to cancer. In this study, we found that a decreased expression of an allele might cause predisposition to genetic disease. Dopa responsive dystonia (DRD) is a dominant disease caused by mutations in GCH1 gene. The sequence analysis of the GCH1 in a patient with typical DRD symptoms revealed two novel missense mutations instead of a single dominant mutation. Family members with either of the mutations did not have any symptoms of DRD. The expression level of a R198W mutant allele decreased to about 50%, suggesting that modestly decreased expression caused by an SNP should lead to predisposition of a genetic disease in susceptible individuals.


Subject(s)
Child , Humans , Male , Clubfoot/genetics , Dopamine/deficiency , Dystonic Disorders/drug therapy , GTP Cyclohydrolase/genetics , Genes, Recessive , Genetic Predisposition to Disease , Levodopa/administration & dosage , Mutation, Missense , Pedigree , Polymorphism, Genetic
3.
Arq. neuropsiquiatr ; 65(4b): 1224-1227, dez. 2007. ilus, tab
Article in English | LILACS | ID: lil-477776

ABSTRACT

Dopa-responsive dystonia (DRD) is an inherited metabolic disorder now classified as DYT5 with two different biochemical defects: autosomal dominant GTP cyclohydrolase 1 (GCH1) deficiency or autosomal recessive tyrosine hydroxylase deficiency. We report the case of a 10-years-old girl with progressive generalized dystonia and gait disorder who presented dramatic response to levodopa. The phenylalanine to tyrosine ratio was significantly higher after phenylalanine loading test. This condition had two different heterozygous mutations in the GCH1 gene: the previously reported P23L mutation and a new Q182E mutation. The characteristics of the DRD and the molecular genetic findings are discussed.


Distonia dopa-responsiva (DRD), classificada como DYT5, é um erro inato do metabolismo que pode ser causado por dois diferentes tipos de defeito bioquímico: deficiência de GTP ciclo-hidrolase 1 (GCH1) (autossômica dominante) ou de tirosina hidroxilase (autossômica recessiva). Descrevemos o caso de menina de 10 anos com distonia generalizada progressiva e alteração da marcha com importante melhora após uso de levodopa. A relação fenilalanina/tirosina estava aumentada após teste de sobrecarga com fenilalanina. O estudo molecular mostrou que o paciente apresenta uma combinação hererozigótica de mutação no gene GCH1: a já conhecida mutação P23L e uma nova mutação Q182E. Discutem-se as características da DRD e as alterações genéticas possíveis.


Subject(s)
Child , Female , Humans , Dopamine Agents/therapeutic use , Dystonia/drug therapy , Dystonia/genetics , GTP Cyclohydrolase/genetics , Levodopa/therapeutic use , Mutation, Missense/genetics , Dystonia/blood , Heterozygote , Phenylalanine/blood , Tyrosine/blood
SELECTION OF CITATIONS
SEARCH DETAIL