Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Cad. saúde pública ; 31(3): 597-606, 03/2015. tab
Article in Portuguese | LILACS | ID: lil-744836

ABSTRACT

Foi avaliada a associação entre menopausa e insônia e a influência de variáveis socioeconômicas e psicossociais, em estudo transversal com 2.190 funcionárias de uma universidade (Estudo Pró-Saúde), a partir de um questionário autopreenchível com variáveis sobre menopausa, insônia, transtorno mental comum, eventos de vida estressantes, apoio social e variáveis socioeconômicas. Odds ratios foram calculados por meio de regressão logística multivariada, com desfecho politômico. Após ajuste para potenciais confundidoras sociodemográficas, mulheres na menopausa há mais de 60 meses apresentaram maior chance de reportar queixas de sono frequentes (OR entre 1,53 e 1,86) do que as que estavam na menopausa há menos de 60 meses. Após os ajustes, no primeiro grupo, para as variáveis psicossociais, a magnitude dos ORs reduziu para 1,53 (IC95%: 0,92-2,52) para dificuldade em iniciar o sono, 1,81 (IC95%: 1,09-2,98) para dificuldade em manter o sono e 1,71 (IC95%: 1,08-2,73) para queixa geral de insônia. Fatores psicossociais podem mediar a manifestação da insônia em mulheres na menopausa.


This study evaluated the association between insomnia and menopausal status and the influence of socioeconomic and psychosocial variables on this association in a cross-sectional analysis of 2,190 university employees (the Pró-Saúde Study). A self-administered questionnaire was used, covering menopausal status, complaints of insomnia, common mental disorders, stressful life events, social support, and socioeconomic variables. Odds ratios were calculated using logistic regression with a polytomous outcome. After adjusting for potential socio-demographic confounders, women who had entered menopause more than 60 months previously were more likely to report complaints with sleep (OR 1.53-1.86) as compared to women in menopause for less than 60 months. After adjusting for psychosocial variables, in the first group the ORs decreased to 1.53 (95%CI: 0.92-2.52) for difficulty initiating sleep, 1.81 (95%CI: 1.09-2.98) for difficulty maintaining sleep, and 1.71 (95%CI: 1.08-2.73) for general complaints of insomnia. Psychosocial factors can mediate the manifestation of insomnia among menopausal women.


En este estudio se evaluó la asociación entre insomnio y menopausia y la influencia de las variables socioeconómicas y psicosociales, en un estudio transversal con 2.190 mujeres de una universidad (Estudio Pro-Salud), a partir de un cuestionario autoadministrado con variables de la menopausia, insomnio, trastornos mentales, situaciones de estrés vital, apoyo social y variables socioeconómicas. Se calcularon los odds ratio mediante regresión logística multivariante con desenlace politómico. Después de ajustar por factores de confusión sociodemográficos potenciales, las mujeres menopáusicas desde hace más de 60 meses fueron más propensas a reportar quejas frecuentes de sueño (OR entre 1,53 y 1,86) que las menopáusicas hace menos de 60 meses. Después de los ajustes, en el primer grupo, para las variables psicosociales la magnitud de los OR se redujo a 1,53 (IC95%: 0,92-2,52) para la dificultad para iniciar el sueño, un 1,81 (IC95%: 1,09-2,98) para mantener el sueño y un 1,71 (IC95%: 1,08-2,73) para las quejas de insomnio en general. Los factores psicosociales pueden mediar en la manifestación del insomnio en las mujeres menopáusicas.


Subject(s)
Animals , Mice , Cerebral Cortex/metabolism , Drosophila Proteins/metabolism , Microfilament Proteins/metabolism , Microtubules/metabolism , Neurogenesis , Neurons/metabolism , Pseudopodia/metabolism , Actins/metabolism , Cell Line, Tumor , Cells, Cultured , Cerebral Cortex/embryology , Drosophila , Drosophila Proteins/genetics , /metabolism , Growth Cones/metabolism , Mutation , Microfilament Proteins/genetics , RNA Interference
2.
Journal of Biomedical Research ; : 60-64, 2013.
Article in Korean | WPRIM | ID: wpr-38428

ABSTRACT

Neuronal differentiation is a complex biological process accompanying cytoskeletal reorganization, including neurite outgrowth and growth cone formation. Therefore, neuronal differentiation is critically regulated by actin-related signaling proteins, such as small Rho GTPases, guanine nucleotide exchange factors (GEFs), and myosins. This study will demonstrate the change in activity of three small Rho GTPases, Rac, Cdc42, and Rho A, by treatment with blebbistatin (BBS), a specific inhibitor for myosin, during bFGF-induced neurite outgrowth in PC12 cells. Treatment with BBS induced morphological changes in growth cones and neurites during differentiation. A marked increase in protrusion and filopodia structures in growth cones, the shaft of neuritis, and cell membranes was observed in the cells treated with BBS. Activity of Rho GTPases showed the alterations in response to BBS. Activities of both Rac and Rho A were inhibited by BBS in a time-dependent manner. By contrast, Cdc42 activity was not changed by BBS. These results suggest that inactivation of myosin II by BBS induced morphological changes in neurites and growth cones and distinct regulation of three Rho GTPases during differentiation of PC12 cells.


Subject(s)
Animals , Biological Phenomena , Cell Membrane , Growth Cones , Guanine Nucleotide Exchange Factors , Heterocyclic Compounds, 4 or More Rings , Myosin Type II , Myosins , Neurites , Neuritis , Neurons , PC12 Cells , Proteins , Pseudopodia , rho GTP-Binding Proteins
3.
Invest. clín ; 51(4): 501-518, dic. 2010. ilus, tab
Article in Spanish | LILACS | ID: lil-630908

ABSTRACT

Los cultivos neuronales del sistema nervioso central se han venido usando ampliamente para el estudio de los mecanismos que conducen el proceso de diferenciación neuronal, así como también se han empleado como modelos in vitro para evaluar drogas y desarrollar nuevas terapias, de allí la importancia profundizar en la caracterización de dicho proceso. En este estudio, se prepararon cultivos primarios de células del hipocampo para estudiar los tipos celulares desarrollados, el desarrollo de dendritas y axones, la densidad de vesículas sinápticas y el desarrollo de los conos de crecimiento. Mediante inmunofluorescencia usando anticuerpos y marcadores no inmunológicos, se observaron los cambios experimentados por las estructuras de interés durante diferentes estadios temporales (1-21 días). Observamos una mayor proporción de neuronas sobre glias, desarrollo normal de las redes neuronales (conformadas por dendritas y axones), incremento en la longitud de dendritas y el establecimiento de sinapsis. Las vesículas sinápticas también experimentaron un incremento en su densidad a medida que aumentaba el tiempo de cultivo. Finalmente, se estudiaron los cambios morfológicos de los conos de crecimiento observándose que al inicio del cultivo en su mayoría se encontraban cerrados, pero a medida que maduraban las neuronas la proporción de conos de crecimiento abiertos aumentó. Este trabajo representa un avance en la caracterización morfométrica de los cultivos neuronales puesto que recoge de manera simultánea y cuantitativa los principales aspectos que marcan el proceso de diferenciación neuronal. En este estudio, la medición de estas características morfológicas hizo posible establecer parámetros cuantitativos que ayudarán a distinguir las principales etapas de la diferenciación neuronal.


Neuronal cultures of the central nervous system are widely used to study the molecular mechanisms that rule the differentiation process. These cultures have also been used to evaluate drugs and to develop new therapies. From this we can infer the relevance of performing an extended characterization that involves the main aspects driving such process. To carry out such characterization in the present study we prepared primary cultures from hippocampal cells to study cell identity, development of neuronal processes (dendrites and axons), density of synaptic vesicles and development of growth cones. Using immunofluorescence techniques, specific antibodies and non-immunological probes, we studied the changes experienced by the structures under study during different temporal stages (1-21 days). We observed a major proportion of neurons over glia, normal development of neuronal networks (formed by dendrites and axons), increase in the length of dendrites and axons and establishment of synaptic connections. Synaptic vesicles also showed an increase in their densities as long as the time of the culture progressed. Finally, we studied the morphological changes of the growth cones and observed that those were mostly closed at the beginning of the culture period. As neurons matured we observed an increase in the proportion of open growth cones. This work represents an advance in the morphometric characterization of neuronal cultures, since it gathers the main aspects that outline the neuronal differentiation process. In this study, measurement of these morphological features made possible to establish quantitative markers that will allow establishing more precisely the different stages of neuronal differentiation.


Subject(s)
Animals , Rats , Hippocampus/cytology , In Vitro Techniques , Neurogenesis , Neurons/cytology , Axons/ultrastructure , Cells, Cultured/cytology , Dendrites/ultrastructure , Growth Cones/ultrastructure , Hippocampus/embryology , Microscopy, Fluorescence , Microscopy, Interference , Neuroglia/cytology , Rats, Sprague-Dawley , Synaptic Vesicles/ultrastructure
4.
Neuroscience Bulletin ; (6): 57-65, 2008.
Article in English | WPRIM | ID: wpr-264696

ABSTRACT

<p><b>OBJECTIVE</b>Combine olfactory ensheathing glia (OEG) implantation with ex vivo non-viral vector-based neurotrophin-3 (NT-3) gene therapy in attempting to enhance regeneration after thoracic spinal cord injury (SCI).</p><p><b>METHODS</b>Primary OEG were transfected with cationic liposome-mediated recombinant plasmid pcDNA3.1(+)-NT3 and subsequently implanted into adult Wistar rats directly after the thoracic spinal cord (T9) contusion by the New York University impactor. The animals in 3 different groups received 4x10(5) OEG transfected with pcDNA3.1(+)-NT3 or pcDNA3.1(+) plasmids, or the OEGs without any plasmid transfection, respectively; the fourth group was untreated group, in which no OEG was implanted.</p><p><b>RESULTS</b>NT-3 production was seen increased both ex vivo and in vivo in pcDNA3.1(+)-NT3 transfected OEGs. Three months after implantation of NT-3-transfected OEGs, behavioral analysis revealed that the hindlimb function of SCI rats was improved. All spinal cords were filled with regenerated neurofilament-positive axons. Retrograde tracing revealed enhanced regenerative axonal sprouting.</p><p><b>CONCLUSION</b>Non-viral vector-mediated genetic engineering of OEG was safe and more effective in producing NT-3 and promoting axonal outgrowth followed by enhancing SCI recovery in rats.</p>


Subject(s)
Animals , Female , Rats , Animals, Newborn , Brain Tissue Transplantation , Methods , Cells, Cultured , DNA, Recombinant , Therapeutic Uses , Disease Models, Animal , Gene Transfer Techniques , Genetic Therapy , Methods , Genetic Vectors , Genetics , Graft Survival , Genetics , Growth Cones , Metabolism , Nerve Regeneration , Genetics , Neuroglia , Metabolism , Transplantation , Neurotrophin 3 , Genetics , Olfactory Bulb , Cell Biology , Transplantation , Paralysis , Metabolism , Therapeutics , Plasmids , Genetics , Rats, Wistar , Recovery of Function , Genetics , Spinal Cord Injuries , Metabolism , Therapeutics , Treatment Outcome , Up-Regulation , Genetics
5.
Korean Journal of Anatomy ; : 125-131, 2002.
Article in Korean | WPRIM | ID: wpr-651772

ABSTRACT

Heterotrimeric G proteins mediate signals generated by neurotransmitters and hormones. Among G proteins, Go is found in a large quantity in brain and growth cone membranes of neurons. In spite of its abundance in neurons, the role of Go is not fully understood. In the previous study, we showed that transient expression of the alpha subunit of Go (alpha o) modulated neurite outgrowth in F11 cells. It is possible that transient transfection may cause transient accumulation of the protein, which itself may alter differentiation process in non-specific manner. In this study, we determined that modulation of neurite outgrowth by alpha o was specific by evaluating the effect of alpha o in stably transformed F11 cells. F11 cells stably expressing the wild type alpha o (alphao(wt)) and a constitutively active form of alpha o (alpha oQ205L) were established. In normal F11 cells and alpha o-stable cell lines, the neurite length was measured in the presence of dibutyryl cAMP. In normal F11 cells, the average length of neurites was 57.9+/-7.0 microgram. In alpha o(wt)- and alpha o(Q205L)-expressing cells, the average length were 34.4+/-5.1 microgram 30.5+/-3.6 microgram, respectively. Thus, stable expression of alpha o(wt) and alpha o(Q205L) caused a decrease in neurite outgrowth by 40.6%, 47.3% respectively. This result indicates that modulation of neurite by alpha o was specific to the function of alpha o but not due to accumulation of exogenous proteins.


Subject(s)
Brain , Cell Line , Growth Cones , GTP-Binding Proteins , Heterotrimeric GTP-Binding Proteins , Membranes , Neurites , Neurons , Neurotransmitter Agents , Transfection
6.
Biol. Res ; 35(2): 139-150, 2002. ilus, tab
Article in English | LILACS | ID: lil-323336

ABSTRACT

Protein domains play a fundamental role in the spatial and temporal organization of intracellular signaling systems. While protein phosphorylation has long been known to modify the interactions that underlie this organization, the dynamic cycling of lipids should now be included amongst the posttranslational processes determining specificity in signal transduction. The characteristics of this process are reminiscent of the properties of protein and lipid phosphorylation in determining compartmentalization through SH2 or PH domains. Recent studies have confirmed the functional importance of protein S-palmitoylation in the compartmentalization of signaling molecules that support normal physiological function in cell division and apoptosis, and synaptic transmission and neurite outgrowth. In neurons, S-palmitoylation and targeting of proteins to rafts are regulated differentially in development by a number of processes, including some related to synaptogenesis and synaptic plasticity. Alterations in the S-palmitoylation state of proteins substantially affect their cellular function, raising the possibility of new therapeutic targets in cancer and nervous system injury and disease


Subject(s)
Humans , Animals , Rats , Cell Compartmentation , Neurons , Palmitates , Protein Processing, Post-Translational , Protein S , Signal Transduction , Growth Cones , Protein S , Synaptosomes
7.
Korean Journal of Anatomy ; : 937-944, 1998.
Article in Korean | WPRIM | ID: wpr-655651

ABSTRACT

G proteins mediate signal transductions generated by neurotransmitters and hormones. Among G proteins, Go is found in a large quantity in brain, but its precise role in the nervous tissue is not fully understood. In addition, Go is one of the major proteins in growth cone membranes, which implies an important role of Go in the regulation of axon outgrowth. In this study, we attempted to determine the role of Go in axon outgrowth. We overexpressed the a subunit of Go (ao) in F11 neuroblatoma cells and examined the effect of ao on the neurite outgrowth. In F11 cells, dibutyryl cAMP increased neurite outgrowth remarkably upto 0.1 mM in a concentration dependent manner, but in a less degree at higher concentration. In the presence of 0.5 mM dibutyryl cAMP, the differentiation of F11 cells was almost saturated and the cells exhibited a typical neuronal morphology. Overexpression of ao caused a reduction of neurite outgrowth by 77.4% in length while increasing the number of neurites by 2.2 fold. The average neurite length was 38.9+/-12.5 mm in the ao-overexpressing F11 cells but 172.3+/-25.9 mm in the untransfected cells The total number of nurites per cell was 5.6+/-0.4 in the ao-overexpressing cells but 2.5 0.2 in the untransfected cells. This result suggests that Go may play an important role in growth cone collapse during neuronal cell differentiation.


Subject(s)
Axons , Brain , Cell Differentiation , Growth Cones , GTP-Binding Proteins , Membranes , Neurites , Neurons , Neurotransmitter Agents , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL