Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Experimental & Molecular Medicine ; : 220-225, 2001.
Article in English | WPRIM | ID: wpr-144649

ABSTRACT

Low molecular weight GTP-binding proteins are molecular switches that are believed to play pivotal roles in cell growth, differentiation, cytoskeletal organization, and vesicular trafficking. Rab proteins are key players in the regulation of vesicular transport, while Rho family members control actin-dependent cell functions, i.e. the regulation of cytoskeletal organization in response to extracelluar growth factors and in dendritic neuron development. In this study, we have examined the regulation of small GTP-binding proteins that are implicated in neurosecretion and differentiation of neuron during ageing processes. Comparison of small GTP-binding proteins from the synaptosome and crude synaptic vesicles (LP2 membranes) of 2 months and 20 months old rat brain respectively showed no difference in the level of Rab family proteins (Rab3A and Rab5A). However, Rho family proteins such as RhoA and Cdc42 were elevated in LP2 membranes of the aged brain. The dissociation of Rab3A by Ca2+/calmodulin (CaM) from SV membranes was not changed during aging. Ca2+/CaM stimulated phosphorylation of the 22 and 55-kDa proteins in SV membranes from the aged rat brain, and inhibited phosporylation of 30-kDa proteins. GTPgammaS inhibited phosphorylation of the 100-kDa proteins and stimulated phosphorylation of the 70 kDa in LP2 membranes from both the young and aged rat brains, whereas GDPbetaS caused just the opposite reaction. These results suggest that protein phosphorylation and regulation of Rho family GTPases in rat brain appears to be altered during ageing processes.


Subject(s)
Cattle , Rats , Aging , Animals , Brain/metabolism , Calcium/pharmacology , Comparative Study , GTP-Binding Proteins/metabolism , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Molecular Weight , Phosphorylation/drug effects , Rats, Sprague-Dawley , Synaptic Membranes/metabolism , Synaptosomes/metabolism , cdc42 GTP-Binding Protein/biosynthesis , rab3A GTP-Binding Protein/metabolism , rab5 GTP-Binding Proteins/metabolism , rhoA GTP-Binding Protein/biosynthesis
2.
Experimental & Molecular Medicine ; : 220-225, 2001.
Article in English | WPRIM | ID: wpr-144637

ABSTRACT

Low molecular weight GTP-binding proteins are molecular switches that are believed to play pivotal roles in cell growth, differentiation, cytoskeletal organization, and vesicular trafficking. Rab proteins are key players in the regulation of vesicular transport, while Rho family members control actin-dependent cell functions, i.e. the regulation of cytoskeletal organization in response to extracelluar growth factors and in dendritic neuron development. In this study, we have examined the regulation of small GTP-binding proteins that are implicated in neurosecretion and differentiation of neuron during ageing processes. Comparison of small GTP-binding proteins from the synaptosome and crude synaptic vesicles (LP2 membranes) of 2 months and 20 months old rat brain respectively showed no difference in the level of Rab family proteins (Rab3A and Rab5A). However, Rho family proteins such as RhoA and Cdc42 were elevated in LP2 membranes of the aged brain. The dissociation of Rab3A by Ca2+/calmodulin (CaM) from SV membranes was not changed during aging. Ca2+/CaM stimulated phosphorylation of the 22 and 55-kDa proteins in SV membranes from the aged rat brain, and inhibited phosporylation of 30-kDa proteins. GTPgammaS inhibited phosphorylation of the 100-kDa proteins and stimulated phosphorylation of the 70 kDa in LP2 membranes from both the young and aged rat brains, whereas GDPbetaS caused just the opposite reaction. These results suggest that protein phosphorylation and regulation of Rho family GTPases in rat brain appears to be altered during ageing processes.


Subject(s)
Cattle , Rats , Aging , Animals , Brain/metabolism , Calcium/pharmacology , Comparative Study , GTP-Binding Proteins/metabolism , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Molecular Weight , Phosphorylation/drug effects , Rats, Sprague-Dawley , Synaptic Membranes/metabolism , Synaptosomes/metabolism , cdc42 GTP-Binding Protein/biosynthesis , rab3A GTP-Binding Protein/metabolism , rab5 GTP-Binding Proteins/metabolism , rhoA GTP-Binding Protein/biosynthesis
3.
Experimental & Molecular Medicine ; : 81-86, 1998.
Article in English | WPRIM | ID: wpr-70155

ABSTRACT

We previously reported an identification of a 77-kDa GTP-binding protein that co-purified with the alpha 1-adrenoceptor following ternary complex formation. In the present paper, we report on the purification and characterization of this GTP-binding protein (termed G alpha h5) isolated from pig heart membranes. After solubilization of pig heart membranes with NaCl, G alpha h5 was purified by sequential chromatographies using DEAE-Cellulose, Q-Sepharose, and GTP-agarose columns. The protein displayed high-affinity GTP gamma S binding which is Mg(2+)-dependent and saturable. The relative order of affinity of nucleotide binding by G alpha h5 was GTP > GDP > ITP >> ATP > or = adenyl-5'-yl imidodiphosphate, which was similar to that observed for other heterotrimeric G-proteins involved in receptor signaling. Moreover, the G alpha h5 demonstrated transglutaminase (TGase) activity that was blocked either by EGTA or GTP gamma S. In support of these observations, the G alpha h5 was recognized by a specific antibody to G alpha h7 or TGase II, indicating a homology with G alpha h (TGase II) family. These results demonstrate that 77-kDa G alpha h5 from pig heart is an alpha 1-adrenoceptor-coupled G alpha h (TGase II) family which has species-specificity in molecular mass.


Subject(s)
Animals , Binding Sites , Binding, Competitive , Cross Reactions , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/isolation & purification , GTP-Binding Proteins/immunology , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Molecular Weight , Myocardium/chemistry , Transglutaminases/metabolism , Receptors, Adrenergic, alpha-1/metabolism , Swine
SELECTION OF CITATIONS
SEARCH DETAIL