Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Experimental & Molecular Medicine ; : 267-277, 2007.
Article in English | WPRIM | ID: wpr-201428

ABSTRACT

In vascular smooth muscle cells (VSMCs), induction of the heme oxygenase-1 (HO-1) confers vascular protection against cellular proliferation mainly via its up-regulation of the cyclin-dependent kinase inhibitor p21(WAF1/CIP1) that is involved in negative regulation of cellular proliferation. In the present study, we investigated whether the phytochemical curcumin and its metabolite tetrahydrocurcumin could induce HO-1 expression and growth inhibition in rat VSMCs and, if so, whether their antiproliferative effect could be mediated via HO-1 expression. At non-toxic concentrations, curcumin possessing two Michael-reaction acceptors induced HO-1 expression by activating antioxidant response element (ARE) through translocation of the nuclear transcription factor E2-related factor-2 (Nrf2) into the nucleus and also inhibited VSMC growth triggered by 5% FBS in a dose-dependent manner. In contrast, tetrahydrocurcumin lacking Michael-reaction acceptor showed no effect on HO-1 expression, ARE activation and VSMC growth inhibition. The antiproliferative effect of curcumin in VSMCs was accompanied by the increased expression of p21(WAF1/CIP1). Inhibition of VSMC growth and expression of p21(WAF1/CIP1) by curcumin were partially, but not completely, abolished when the cells were co- incubated with the HO inhibitor tin protoporphyrin. In human aortic smooth muscle cells (HASMCs), curcumin also inhibited growth triggered by TNF-alpha and increased p21(WAF1/CIP1) expression via HO-1-dependent manner. Our findings suggest that curcumin has an ability to induce HO-1 expression, presumably through Nrf2-dependent ARE activation, in rat VSMCs and HASMCs, and provide evidence that the antiproliferative effect of curcumin is considerably linked to its ability to induce HO-1 expression.


Subject(s)
Animals , Humans , Rats , Active Transport, Cell Nucleus , Aorta/cytology , Cell Nucleus/metabolism , Cell Proliferation/drug effects , Cells, Cultured , Curcumin/analogs & derivatives , Cyclin-Dependent Kinase Inhibitor p21/biosynthesis , Gene Expression Regulation , Heme Oxygenase (Decyclizing)/biosynthesis , Heme Oxygenase-1/biosynthesis , Metalloporphyrins/pharmacology , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , NF-E2-Related Factor 2/metabolism , Protoporphyrins/pharmacology , Regulatory Sequences, Nucleic Acid , Response Elements , Tumor Necrosis Factor-alpha/pharmacology
2.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 173-7, 2004.
Article in English | WPRIM | ID: wpr-634129

ABSTRACT

To confirm the existence of heme oxygenase (HO)- carbon monoxide (CO)- cyclic guanosine monophosphate (cGMP) pathway in the cultured human trabecular meshwork cells (HT-MCs) in vitro, and to evaluate the inductive role of hemin on this pathway, HTMCs of the third to fourth generation were cultured in vitro. Reverse transcripase-polymerase chain reaction (RT-PCR) was employed for detection of HO-1 and HO-2 mRNA. Immunohistochemical staining was used to detect HO-1 and HO-2 proteins. Hemin was added into the culture solution. The HO-1 mRNA levels were quantified by RT-PCR. The relative amount of carbon monoxide released into the media was measured with the quantifying carbon monoxide hemoglobin (HbCO) by spectrophotometry. Radioimmunoassay was used to determine changes of cGMP in HTMCs. The results showed that cultured cells had the specific characteristics of HTMCs. Both HO-1 and HO-2 genes were expressed in HTMCs, as well as HO-1 and HO-2 proteins in HTMCs. Hemin induced HO-1 mRNA, HbCO and cGMP in a dose-dependent manner. In conclusion, HO-CO-cGMP pathway exists in the cultured HTMCs and can be induced by hemin. Pharmacological stimulation of HO-CO-cGMP pathway may constitute a novel therapeutic approach to rescuing glaucoma.


Subject(s)
Carbon Monoxide/metabolism , Cells, Cultured , Cyclic GMP/biosynthesis , Cyclic GMP/genetics , Heme Oxygenase (Decyclizing)/biosynthesis , Heme Oxygenase (Decyclizing)/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Signal Transduction , Trabecular Meshwork/cytology , Trabecular Meshwork/metabolism
3.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 356-8, 368, 2003.
Article in English | WPRIM | ID: wpr-640963

ABSTRACT

We investigated the expression of heme oxygenase-1 (HO-1) gene and production of endogenous carbon monoxide (CO) in the rat lung tissue at different time points of chronic hypoxic pulmonary hypertension and the effect of hemin on the expression of HO-1 gene and pulmonary hypertension. A rat model of hypoxic pulmonary hypertension was recreated by exposure to intermittent normobaric hypoxic environment (10% O2). Reverse transcriptase polymerase chain reaction (RT-PCR) was performed to determine the level of HO-1 mRNA in the rat lung tissue and double wave length spectrophotometry was used to evaluate the quantity of COHb in arterial blood. Cardiac catheterization was employed to measure the right ventricular systolic pressure (RVSP) and HE staining was performed in dissected lung tissue to observe the pathological changes of the intra-acinar pulmonary arteries (IAPA). It was found that (1) There was a low level of HO-1 mRNA in normal rat lung tissue, but the level of HO-1 mRNA increased by 2-4 times in the lung tissue of hypoxic rats (P<0.01). The quantity of COHb was 2-3 times those of control group (P<0.01 or P<0.05). These were accompanied by the increased of RVSP and the thickened IAPA; (2) Hemin could keep the HO-1 mRNA and COHb in the hypoxic rat lung tissue at a high level, and partially suppressed the increase of rat RVSP, thereby ameliorating the pathological changes of IAPA. In conclusion, the upregulation of the expression of HO-1 gene and production of CO in the rat lung of hypoxic pulmonary hypertension plays a role of inhibition in the development of hypoxic pulmonary hypertension. Hemin has a therapeutic effect on hypoxic pulmonary hypertension.


Subject(s)
Hypoxia/complications , Carbon Monoxide/metabolism , Carbon Monoxide/physiology , Heme Oxygenase (Decyclizing)/biosynthesis , Heme Oxygenase (Decyclizing)/genetics , Heme Oxygenase-1 , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/metabolism , Lung/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , RNA, Messenger/biosynthesis , RNA, Messenger/genetics
4.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 299-301, 2002.
Article in English | WPRIM | ID: wpr-634105

ABSTRACT

To investigate the expression of the HO-1 gene in PC12 cells in hypoxic environment and gain further insight to the role of HO-1 in cerebral ischemia, PC12 cells were exposed to hypoxia environment (95% N2, 5% CO2) for 0.5 h, 1 h, 4 h, 8 h, 12 h, 24 h respectively. The level of HO-1 mRNA was examined by reverse transcriptase polymerase chain reaction (RT-PCR); the volume of COHb in the media were measured spectrophotometrically and the cGMP concentration of PC12 cell extracts was determined by radioimmunoassay. We found that after exposure to hypoxia for 1 h, 4 h, 8 h, 12 h, 24 h, HO-1 mRNA increased by 3%, 4%, 17%, 31% 36% as compared with that in control group respectively (P < 0.01 or P < 0.05); the COHb increased by 12%, 29%, 59%, 88%, 94% as compared with that in control group respectively (P < 0.01 or P < 0.05), and the cGMP concentration were 2.2, 3.4, 5.2, 8.1, 10.9-fold as that of the control group (P < 0.01). We are led to conclude that hypoxia induced the expression of HO-1 gene, the production of endogenous CO, and the concentration of cGMP was elevated as well.


Subject(s)
Carbon Monoxide/metabolism , Cell Hypoxia , Cyclic GMP/metabolism , Heme Oxygenase (Decyclizing)/biosynthesis , Heme Oxygenase (Decyclizing)/genetics , Heme Oxygenase-1 , PC12 Cells , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Up-Regulation
5.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 152-4, 2002.
Article in English | WPRIM | ID: wpr-634044

ABSTRACT

In order to investigate the relationship between the expression of heme oxygenase-2 (HO-2) mRNA and the pathogenesis of Hirschsprung's disease (HD), total ribonucleic acid (RNA) was extracted in the aganglionic and ganglionic segments of colon respectively from 15 cases of HD. The single-stranded cDNA of HO-2 was synthesized and further amplified by reverse transcription-polymerase chain reaction (RT-PCR). The expression of HO-2 mRNA was normal in ganglionic segments, but absent in aganglionic segments. It is concluded that the absence of HO-2 mRNA expression may be an important mechanism responsible for HD.


Subject(s)
Colon/enzymology , Heme Oxygenase (Decyclizing)/biosynthesis , Heme Oxygenase (Decyclizing)/genetics , Hirschsprung Disease/enzymology , Hirschsprung Disease/etiology , Hirschsprung Disease/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics
6.
La Plata; Federación Bioquímica de la Provincia de Buenos Aires; 1997. x,171 p. graf, tab.(Acta bioquím. clín. latinoam, 3).
Monography in Spanish | LILACS, BINACIS | ID: biblio-1194795
SELECTION OF CITATIONS
SEARCH DETAIL