Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Braz. j. microbiol ; 46(4): 1111-1118, Oct.-Dec. 2015. tab, graf
Article in English | LILACS | ID: lil-769642

ABSTRACT

Abstract In the present work, twelve bacilli were isolated from four different regions of human skin from Bela population of Nagpur district, India. The isolated bacilli were identified by their morphological, cultural and biochemical characteristics. Seven isolates were Gram negative rods, out of which five were belong to genus Pseudomonas. Three among the five Gram positive isolates were identified as Dermabactor and the remaining two Bacillus. Their antimicrobial susceptibility profile was determined by Kirby-Bauer disc diffusion method. The isolates showed resistance to several currently used broad-spectrum antibiotics. The Dermabactor genus was resistant to vancomycin, although it was earlier reported to be susceptible. Imipenem was found to be the most effective antibiotic for Pseudomonas while nalidixic acid, ampicillin and tetracycline were ineffective. Isolates of Bacillus displayed resistance to the extended spectrum antibiotics cephalosporin and ceftazidime. Imipenem, carbenicillin and ticarcillin were found to be the most effective antibiotics as all the investigated isolates were susceptible to them. Antibiotic resistance may be due to the overuse or misuse of antibiotics during the treatment, or following constant exposure to antibiotic-containing cosmetic formulations.


Subject(s)
Adolescent/classification , Adolescent/drug effects , Adolescent/genetics , Adolescent/isolation & purification , Adolescent/microbiology , Adolescent/pharmacology , Adult/classification , Adult/drug effects , Adult/genetics , Adult/isolation & purification , Adult/microbiology , Adult/pharmacology , Anti-Bacterial Agents/classification , Anti-Bacterial Agents/drug effects , Anti-Bacterial Agents/genetics , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/microbiology , Anti-Bacterial Agents/pharmacology , Bacillus/classification , Bacillus/drug effects , Bacillus/genetics , Bacillus/isolation & purification , Bacillus/microbiology , Bacillus/pharmacology , Female/classification , Female/drug effects , Female/genetics , Female/isolation & purification , Female/microbiology , Female/pharmacology , Healthy Volunteers/classification , Healthy Volunteers/drug effects , Healthy Volunteers/genetics , Healthy Volunteers/isolation & purification , Healthy Volunteers/microbiology , Healthy Volunteers/pharmacology , Humans/classification , Humans/drug effects , Humans/genetics , Humans/isolation & purification , Humans/microbiology , Humans/pharmacology , Male/classification , Male/drug effects , Male/genetics , Male/isolation & purification , Male/microbiology , Male/pharmacology , Microbial Sensitivity Tests/classification , Microbial Sensitivity Tests/drug effects , Microbial Sensitivity Tests/genetics , Microbial Sensitivity Tests/isolation & purification , Microbial Sensitivity Tests/microbiology , Microbial Sensitivity Tests/pharmacology , Middle Aged/classification , Middle Aged/drug effects , Middle Aged/genetics , Middle Aged/isolation & purification , Middle Aged/microbiology , Middle Aged/pharmacology , Skin/classification , Skin/drug effects , Skin/genetics , Skin/isolation & purification , Skin/microbiology , Skin/pharmacology , Young Adult/classification , Young Adult/drug effects , Young Adult/genetics , Young Adult/isolation & purification , Young Adult/microbiology , Young Adult/pharmacology
2.
Braz. j. microbiol ; 46(4): 943-944, Oct.-Dec. 2015.
Article in English | LILACS | ID: lil-769657

ABSTRACT

The bacterium, Inquilinus limosus, with its remarkable antimicrobial multiresistant profile, has increasingly been isolated in cystic fibrosis patients. We report draft genome sequence of a strain MP06, which is of considerable interest in elucidating the associated mechanisms of antibiotic resistance in this bacterium and for an insight about its persistence in airways of these patients.


Subject(s)
Anti-Bacterial Agents/drug effects , Anti-Bacterial Agents/genetics , Anti-Bacterial Agents/microbiology , Anti-Bacterial Agents/pharmacology , Base Sequence/drug effects , Base Sequence/genetics , Base Sequence/microbiology , Base Sequence/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/microbiology , Drug Resistance, Multiple, Bacterial/pharmacology , Genome, Bacterial/drug effects , Genome, Bacterial/genetics , Genome, Bacterial/microbiology , Genome, Bacterial/pharmacology , Gram-Negative Bacterial Infections/drug effects , Gram-Negative Bacterial Infections/genetics , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/pharmacology , Humans/drug effects , Humans/genetics , Humans/microbiology , Humans/pharmacology , Molecular Sequence Data/drug effects , Molecular Sequence Data/genetics , Molecular Sequence Data/microbiology , Molecular Sequence Data/pharmacology , Rhodospirillaceae/drug effects , Rhodospirillaceae/genetics , Rhodospirillaceae/microbiology , Rhodospirillaceae/pharmacology
3.
Braz. j. microbiol ; 46(4): 1119-1124, Oct.-Dec. 2015. tab
Article in English | LILACS | ID: lil-769658

ABSTRACT

Abstract Acinetobacter baumannii is a frequently isolated etiologic agent of nosocomial infections, especially in intensive care units. With the increase in multi-drug resistance of A. baumannii isolates, finding appropriate treatment alternatives for infections caused by these bacteria has become more difficult, and available alternate treatments include the use of older antibiotics such as colistin or a combination of antibiotics. The current study aimed to evaluate the in vitro efficacy of various antibiotic combinations against multi-drug resistant A. baumannii strains. Thirty multi-drug and carbapenem resistant A. baumannii strains isolated at the Ankara Training and Research Hospital between June 2011 and June 2012 were used in the study. Antibiotic susceptibility tests and species-level identification were performed using conventional methods and the VITEK 2 system. The effects of meropenem, ciprofloxacin, amikacin, tigecycline, and colistin alone and in combination with sulbactam against the isolates were studied using Etest (bioMérieux) in Mueller-Hinton agar medium. Fractional inhibitory concentration index (FIC) was used to determine the efficacy of the various combinations. While all combinations showed a predominant indifferent effect, a synergistic effect was also observed in 4 of the 5 combinations. Synergy was demonstrated in 43% of the isolates with the meropenem-sulbactam combination, in 27% of the isolates with tigecycline-sulbactam, and in 17% of the isolates with colistin-sulbactam and amikacin-sulbactam. No synergy was detected with the sulbactam-ciprofloxacin combination and antagonism was detected only in the sulbactam-colistin combination (6.66% of the isolates). Antibiotic combinations can be used as an alternative treatment approach in multi-drug resistant A. baumannii infections.


Subject(s)
Acinetobacter Infections/drug effects , Acinetobacter Infections/growth & development , Acinetobacter Infections/microbiology , Acinetobacter Infections/pharmacology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/growth & development , Acinetobacter baumannii/microbiology , Acinetobacter baumannii/pharmacology , Anti-Bacterial Agents/drug effects , Anti-Bacterial Agents/growth & development , Anti-Bacterial Agents/microbiology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Drug Resistance, Multiple, Bacterial/growth & development , Drug Resistance, Multiple, Bacterial/microbiology , Drug Resistance, Multiple, Bacterial/pharmacology , Drug Synergism/drug effects , Drug Synergism/growth & development , Drug Synergism/microbiology , Drug Synergism/pharmacology , Humans/drug effects , Humans/growth & development , Humans/microbiology , Humans/pharmacology , Microbial Sensitivity Tests/drug effects , Microbial Sensitivity Tests/growth & development , Microbial Sensitivity Tests/microbiology , Microbial Sensitivity Tests/pharmacology , Sulbactam/drug effects , Sulbactam/growth & development , Sulbactam/microbiology , Sulbactam/pharmacology
4.
Braz. j. microbiol ; 46(4): 957-968, Oct.-Dec. 2015. tab, graf
Article in English | LILACS | ID: lil-769664

ABSTRACT

Abstract L-glutaminase was produced by Streptomyces canarius FR (KC460654) with an apparent molecular mass of 44 kDa. It has 17.9 purification fold with a final specific activity 132.2 U/mg proteins and 28% yield recovery. The purified L-glutaminase showed a maximal activity against L-glutamine when incubated at pH 8.0 at 40 °C for 30 min. It maintained its stability at wide range of pH from 5.0 11.0 and thermal stable up to 60 °C with Tm value 57.5 °C. It has high affinity and catalytic activity for L-glutamine (Km 0.129 mM, Vmax 2.02 U/mg/min), followed by L-asparagine and L-aspartic acid. In vivo, L-glutaminase showed no observed changes in liver; kidney functions; hematological parameters and slight effect on RBCs and level of platelets after 10 days of rabbit's injection. The anticancer activity of L-glutaminase was also tested against five types of human cancer cell lines using MTT assay in vitro. L-glutaminase has a significant efficiency against Hep-G2 cell (IC50, 6.8 μg/mL) and HeLa cells (IC50, 8.3 μg/mL), while the growth of MCF-7 cells was not affected. L-glutaminase has a moderate cytotoxic effect against HCT-116 cell (IC50, 64.7 μg/mL) and RAW 264.7 cell (IC50, 59.3 μg/mL).


Subject(s)
Animals/chemistry , Animals/drug effects , Animals/enzymology , Animals/metabolism , Animals/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/drug effects , Antineoplastic Agents/enzymology , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Biocatalysis/chemistry , Biocatalysis/drug effects , Biocatalysis/enzymology , Biocatalysis/metabolism , Biocatalysis/pharmacology , Cell Proliferation/chemistry , Cell Proliferation/drug effects , Cell Proliferation/enzymology , Cell Proliferation/metabolism , Cell Proliferation/pharmacology , Enzyme Stability/chemistry , Enzyme Stability/drug effects , Enzyme Stability/enzymology , Enzyme Stability/metabolism , Enzyme Stability/pharmacology , Glutaminase/chemistry , Glutaminase/drug effects , Glutaminase/enzymology , Glutaminase/metabolism , Glutaminase/pharmacology , Glutamine/chemistry , Glutamine/drug effects , Glutamine/enzymology , Glutamine/metabolism , Glutamine/pharmacology , HeLa Cells/chemistry , HeLa Cells/drug effects , HeLa Cells/enzymology , HeLa Cells/metabolism , HeLa Cells/pharmacology , /chemistry , /drug effects , /enzymology , /metabolism , /pharmacology , Humans/chemistry , Humans/drug effects , Humans/enzymology , Humans/metabolism , Humans/pharmacology , Kinetics/chemistry , Kinetics/drug effects , Kinetics/enzymology , Kinetics/metabolism , Kinetics/pharmacology , Streptomyces/chemistry , Streptomyces/drug effects , Streptomyces/enzymology , Streptomyces/metabolism , Streptomyces/pharmacology , Substrate Specificity/chemistry , Substrate Specificity/drug effects , Substrate Specificity/enzymology , Substrate Specificity/metabolism , Substrate Specificity/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL