Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Chinese Journal of Biotechnology ; (12): 3302-3317, 2023.
Article in Chinese | WPRIM | ID: wpr-1007959

ABSTRACT

L-methionine, also known as L-aminomethane, is one of the eight essential amino acids required by the human body and has important applications in the fields of feed, medicine, and food. In this study, an L-methionine high-yielding strain was constructed using a modular metabolic engineering strategy based on the M2 strain (Escherichia coli W3110 ΔIJAHFEBC/PAM) previously constructed in our laboratory. Firstly, the production of one-carbon module methyl donors was enhanced by overexpression of methylenetetrahydrofolate reductase (methylenetetrahydrofolate reductase, MetF) and screening of hydroxymethyltransferase (GlyA) from different sources, optimizing the one-carbon module. Subsequently, cysteamine lyase (hydroxymethyltransferase, MalY) and cysteine internal transporter gene (fliY) were overexpressed to improve the supply of L-homocysteine and L-cysteine, two precursors of the one-carbon module. The production of L-methionine in shake flask fermentation was increased from 2.8 g/L to 4.05 g/L, and up to 18.26 g/L in a 5 L fermenter. The results indicate that the one carbon module has a significant impact on the biosynthesis of L-methionine, and efficient biosynthesis of L-methionine can be achieved through optimizing the one carbon module. This study may facilitate further improvement of microbial fermentation production of L-methionine.


Subject(s)
Humans , Methionine , Methylenetetrahydrofolate Reductase (NADPH2) , Carbon , Cysteine , Escherichia coli/genetics , Hydroxymethyl and Formyl Transferases , Carrier Proteins , Escherichia coli Proteins
SELECTION OF CITATIONS
SEARCH DETAIL