Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Indian J Biochem Biophys ; 2014 Jun; 51(3): 201-206
Article in English | IMSEAR | ID: sea-154223

ABSTRACT

3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) plays an important role in catalyzing the first committed step of isoprenoids biosynthesis in mevalonic acid (MVA) pathway. Here, we cloned a full-length transcript of Paris fargesii Franch. The full-length cDNA of P. fargesii HMGR (Pf-HMGR, GenBank accession no. JX508638) was 1,973 bp and contained a 1,728 bp ORF encoding 576 amino acids. Sequence analysis revealed that the deduced Pf-HMGR had high similarity with HMGRs from other plants, including Ricinus communis (77%), Litchi chinensis (76%), Michelia chapensis (75%) and Panax quinquefolius (72%). It had a calculated molecular mass of about 62.13 kDa and an isoelectric point (pI) of 8.47. It contained two transmembrane domains, two putative HMGR binding sites and two NADP(H)-binding sites. The predicted 3-D structure revealed that Pf-HMGR had a similar spatial structure with other plant HMGRs. Three catalytic regions, including L-domain, N-domain and S-domain were detected by structural modeling of HMGR. Tissue expression analysis revealed that Pf-HMGR was strongly expressed in roots and stems than in leaves. Taken together, our data laid a foundation for further investigation of HMGR's functions and regulatory mechanisms in plants.


Subject(s)
Amino Acid Sequence , Base Sequence , Cloning, Molecular , Computational Biology , Hydroxymethylglutaryl CoA Reductases/chemistry , Hydroxymethylglutaryl CoA Reductases/genetics , Hydroxymethylglutaryl CoA Reductases/metabolism , Liliaceae/enzymology , Models, Molecular , Molecular Sequence Data , Protein Conformation , /genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
2.
Indian J Biochem Biophys ; 2010 Dec; 47(6): 331-339
Article in English | IMSEAR | ID: sea-135284

ABSTRACT

While statins, hydroxymethylglutaryl-coenzyme A reductase (HMGCR) inhibitors, are clinically proven to reduce plasma cholesterol levels, a wide variation in inter-individual response to statin therapy has been observed. Pharmacogenetic studies have identified multiple loci that potentially contribute towards the statin response, including the HMGCR gene. To examine, if a statin-resistant, catalytically-active isoform of the human HMGCR could be generated, we have rationally altered the protein to include additional residues in the flap domain, which has a role in statin binding. Comparative enzyme assays with purified wild-type and mutant isoforms reveal the alteration imposes a slight (38%) decrease in the for the substrate, a near 2-fold increase in turnover number, and a 480% increase in the Ki for lovastatin. Thus, alterations in HMGCR could contribute towards the synergistic effects of multiple loci in the statin response.


Subject(s)
Amino Acid Sequence , Base Sequence , DNA Primers/genetics , Humans , Hydroxymethylglutaryl CoA Reductases/chemistry , Hydroxymethylglutaryl CoA Reductases/genetics , Hydroxymethylglutaryl CoA Reductases/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Kinetics , Models, Molecular , Molecular Sequence Data , Mutagenesis , Pharmacogenetics , Protein Engineering , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL