Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 34(9): 1191-1195, Sept. 2001. graf
Article in English | LILACS | ID: lil-290409

ABSTRACT

Neonatal handling has long-lasting effects on behavior and stress reactivity. The purpose of the present study was to investigate the effect of neonatal handling on the number of dopaminergic neurons in the hypothalamic nuclei of adult male rats as part of a series of studies that could explain the long-lasting effects of neonatal stimulation. Two groups of Wistar rats were studied: nonhandled (pups were left undisturbed, control) and handled (pups were handled for 1 min once a day during the first 10 days of life). At 75-80 days, the males were anesthetized and the brains were processed for immunohistochemistry. An anti-tyrosine hydroxylase antibody and the avidin-biotin-peroxidase method were used. Tyrosine hydroxylase-immunoreactive (TH-IR) neurons were counted bilaterally in the arcuate, paraventricular and periventricular nuclei of the hypothalamus in 30-æm sections at 120-æm intervals. Neonatal handling did not change the number of TH-IR neurons in the arcuate (1021 + or - 206, N = 6; 1020 + or - 150, N = 6; nonhandled and handled, respectively), paraventricular (584 + or - 85, N = 8; 682 + or - 62, N = 9) or periventricular (743 + or - 118, N = 7; 990 + or - 158, N = 7) nuclei of the hypothalamus. The absence of an effect on the number of dopaminergic cells in the hypothalamus indicates that the reduction in the amount of neurons induced by neonatal handling, as shown by other studies, is not a general phenomenon in the brain


Subject(s)
Animals , Male , Female , Rats , Behavior, Animal/physiology , Handling, Psychological , Hypothalamus, Anterior/physiology , Neurons/physiology , Tyrosine 3-Monooxygenase/metabolism , Animals, Newborn , Anterior Hypothalamic Nucleus/enzymology , Anterior Hypothalamic Nucleus/physiology , Dopamine/physiology , Hypothalamus, Anterior/enzymology , Neurons/immunology , Physical Stimulation , Rats, Wistar , Stress, Psychological , Tyrosine 3-Monooxygenase/immunology
SELECTION OF CITATIONS
SEARCH DETAIL