Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Chinese Journal of Obstetrics and Gynecology ; (12): 922-929, 2023.
Article in Chinese | WPRIM | ID: wpr-1012299

ABSTRACT

Objective: To investigate the cytotoxic effects of induced pluripotent stem (iPS) cells of anti-mesothelin (MSLN)-chimeric antigen receptor natural killer (CAR-NK) cells (anti-MSLN-iCAR-NK cells) on ovarian epithelial cancer cells. Methods: Twenty cases of ovarian cancer patients who underwent surgical treatment at Henan Provincial People's Hospital from September 2020 to September 2021 were collected, and 20 cases of normal ovarian tissues resected during the same period due to other benign diseases were also collected. (1) Immunohistochemistry and immunofluorescence were used to verify the expression of MSLN protein in ovarian cancer tissues. (2) Fresh ovarian cancer tissues were extracted and cultured to obtain primary ovarian cancer cells. Recombinant lentiviral vectors targeting anti-MSLN-CAR-CD244 were constructed and co-cultured with iPS cells to obtain anti-MSLN-iCAR cells. These cells were differentiated into anti-MSLN-iCAR-NK cells using cytokine-induced differentiation method. The cell experiments were divided into three groups: anti-MSLN-iCAR-NK cell group, natural killer (NK) cell group, and control group. (3) Flow cytometry and live cell staining experiment were used to detect the apoptosis of ovarian cancer cells in the three groups. (4) Enzyme-linked immunosorbent assay (ELISA) was used to measure the expression levels of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), granzyme B (GZMB), perforin 1 (PRF1), interleukin (IL)-6, and IL-10 in the three groups of ovarian cancer cells. Results: (1) Immunohistochemistry analysis showed that a positive expression rate of MSLN protein in ovarian cancer tissues of 65% (13/20), while normal ovarian tissues had a positive rate of 30% (6/20). The comparison between the two groups was statistically significant (χ2=4.912, P=0.027). Immunofluorescence analysis revealed that the positive expression rate of MSLN protein in ovarian cancer tissues was 70% (14/20), while normal ovarian tissues had a positive rate of 30% (6/20). The comparison between the two groups was statistically significant (χ2=6.400, P=0.011). (2) Flow cytometry analysis showed that the apoptotic rate of ovarian cancer cells in the anti-MSLN-iCAR-NK cell group was (29.27±0.85)%, while in the NK cell group and control group were (8.44±0.34)% and (6.83±0.26)% respectively. There were statistically significant differences in the comparisons between the three groups (all P<0.01). Live cell staining experiment showed that the ratio of dead cells to live cells in the anti-MSLN-iCAR-NK cell group was (36.3±8.3)%, while in the NK cell group and control group were (5.4±1.4)% and (2.0±1.3)% respectively. There were statistically significant differences in the comparisons between the three groups (all P<0.001). (3) ELISA analysis revealed that the expression levels of IFN-γ, TNF-α, GZMB, PRF1, IL-6, and IL-10 in ovarian cancer cells of the anti-MSLN-iCAR-NK cell group were significantly higher than those in the NK cell group and the control group (all P<0.05). Conclusion: The anti-MSLN-iCAR-NK cells exhibit a strong killing ability against ovarian cancer cells, indicating their potential as a novel immunotherapy approach for ovarian cancer.


Subject(s)
Humans , Female , Carcinoma, Ovarian Epithelial/metabolism , Ovarian Neoplasms/metabolism , Interleukin-10/pharmacology , Induced Pluripotent Stem Cells/metabolism , Iron-Dextran Complex/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Cell Line, Tumor , Killer Cells, Natural , Interleukin-6
2.
Chinese Journal of Biotechnology ; (12): 192-203, 2023.
Article in Chinese | WPRIM | ID: wpr-970368

ABSTRACT

As main recipient cells for porcine reproductive and respiratory syndrome virus (PRRSV), porcine alveolar macrophage (PAM) are involved in the progress of several highly pathogenic virus infections. However, due to the fact that the PAM cells can only be obtained from primary tissues, research on PAM-based virus-host interactions remains challenging. The improvement of induced pluripotent stem cells (iPSCs) technology provides a new strategy to develop IPSCs-derived PAM cells. Since the CD163 is a macrophage-specific marker and a validated receptor essential for PRRSV infection, generation of stable porcine induced pluripotent stem cells lines containing CD163 reporter system play important roles in the investigation of IPSCs-PAM transition and PAM-based virus-host interaction. Based on the CRISPR/Cas9- mediated gene editing system, we designed a sgRNA targeting CD163 locus and constructed the corresponding donor vectors. To test whether this reporter system has the expected function, the reporter system was introduced into primary PAM cells to detect the expression of RFP. To validate the low effect on stem cell pluripotency, we generated porcine iPSC lines containing CD163 reporter and assessed the pluripotency through multiple assays such as alkaline phosphatase staining, immunofluorescent staining, and EdU staining. The red-fluorescent protein (RFP) expression was detected in CD163-edited PAM cells, suggesting that our reporter system indeed has the ability to reflect the expression of gene CD163. Compared with wild-type (WT) iPSCs, the CD163 reporter-iPSCs display similar pluripotency-associated transcription factors expression. Besides, cells with the reporter system showed consistent cell morphology and proliferation ability as compared to WT iPSCs, indicating that the edited-cells have no effect on stem cell pluripotency. In conclusion, we generated porcine iPSCs that contain a CD163 reporter system. Our results demonstrated that this reporter system was functional and safe. This study provides a platform to investigate the iPS-PAM development and virus-host interaction in PAM cells.


Subject(s)
Animals , Swine , Induced Pluripotent Stem Cells/metabolism , Receptors, Cell Surface/genetics , Antigens, CD/metabolism , Porcine respiratory and reproductive syndrome virus/genetics
3.
Protein & Cell ; (12): 477-496, 2023.
Article in English | WPRIM | ID: wpr-982528

ABSTRACT

Although somatic cells can be reprogrammed to pluripotent stem cells (PSCs) with pure chemicals, authentic pluripotency of chemically induced pluripotent stem cells (CiPSCs) has never been achieved through tetraploid complementation assay. Spontaneous reprogramming of spermatogonial stem cells (SSCs) was another non-transgenic way to obtain PSCs, but this process lacks mechanistic explanation. Here, we reconstructed the trajectory of mouse SSC reprogramming and developed a five-chemical combination, boosting the reprogramming efficiency by nearly 80- to 100-folds. More importantly, chemical induced germline-derived PSCs (5C-gPSCs), but not gPSCs and chemical induced pluripotent stem cells, had authentic pluripotency, as determined by tetraploid complementation. Mechanistically, SSCs traversed through an inverted pathway of in vivo germ cell development, exhibiting the expression signatures and DNA methylation dynamics from spermatogonia to primordial germ cells and further to epiblasts. Besides, SSC-specific imprinting control regions switched from biallelic methylated states to monoallelic methylated states by imprinting demethylation and then re-methylation on one of the two alleles in 5C-gPSCs, which was apparently distinct with the imprinting reprogramming in vivo as DNA methylation simultaneously occurred on both alleles. Our work sheds light on the unique regulatory network underpinning SSC reprogramming, providing insights to understand generic mechanisms for cell-fate decision and epigenetic-related disorders in regenerative medicine.


Subject(s)
Male , Mice , Animals , Cellular Reprogramming/genetics , Tetraploidy , Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/metabolism , DNA Methylation , Spermatogonia/metabolism , Germ Cells/metabolism
4.
Journal of Southern Medical University ; (12): 929-936, 2022.
Article in Chinese | WPRIM | ID: wpr-941023

ABSTRACT

OBJECTIVE@#To investigate effects of physiological hypoxic conditions on suspension and adherence of embryoid bodies (EBs) during differentiation of human induced pluripotent stem cells (hiPSCs) and explore the underlying mechanisms.@*METHODS@#EBs in suspension culture were divided into normoxic (21% O2) and hypoxic (5% O2) groups, and those in adherent culture were divided into normoxic, hypoxic and hypoxia + HIF-1α inhibitor (echinomycin) groups. After characterization of the pluripotency with immunofluorescence assay, the hiPSCs were digested and suspended under normoxic and hypoxic conditions for 5 days, and the formation and morphological changes of the EBs were observed microscopically; the expressions of the markers genes of the 3 germ layers in the EBs were detected. The EBs were then inoculated into petri dishes for further culture in normoxic and hypoxic conditions for another 2 days, after which the adhesion and peripheral expansion rate of the adherent EBs were observed; the changes in the expressions of HIF-1α, β-catenin and VEGFA were detected in response to hypoxic culture and echinomycin treatment.@*RESULTS@#The EBs cultured in normoxic and hypoxic conditions were all capable of differentiation into the 3 germ layers. The EBs cultured in hypoxic conditions showed reduced apoptotic debris around them with earlier appearance of cystic EBs and more uniform sizes as compared with those in normoxic culture. Hypoxic culture induced more adherent EBs than normoxic culture (P < 0.05) with also a greater outgrowth rate of the adherent EBs (P < 0.05). The EBs in hypoxic culture showed significantly up-regulated mRNA expressions of β-catenin and VEGFA (P < 0.05) and protein expressions of HIF-1 α, β-catenin and VEGFA (P < 0.05), and their protein expresisons levels were significantly lowered after treatment with echinomycin (P < 0.05).@*CONCLUSION@#Hypoxia can promote the formation and maturation of suspended EBs and enhance their adherence and post-adherent proliferation without affecting their pluripotency for differentiation into all the 3 germ layers. Our results provide preliminary evidence that activation of HIF-1α/β-catenin/VEGFA signaling pathway can enhance the differentiation potential of hiPSCs.


Subject(s)
Humans , Echinomycin/metabolism , Embryoid Bodies/metabolism , Hypoxia/metabolism , Induced Pluripotent Stem Cells/metabolism , beta Catenin/metabolism
5.
International Journal of Oral Science ; (4): 1-1, 2022.
Article in English | WPRIM | ID: wpr-929130

ABSTRACT

In vitro manipulation of induced pluripotent stem cells (iPSCs) by environmental factors is of great interest for three-dimensional (3D) tissue/organ induction. The effects of mechanical force depend on many factors, including force and cell type. However, information on such effects in iPSCs is lacking. The aim of this study was to identify a molecular mechanism in iPSCs responding to intermittent compressive force (ICF) by analyzing the global gene expression profile. Embryoid bodies of mouse iPSCs, attached on a tissue culture plate in 3D form, were subjected to ICF in serum-free culture medium for 24 h. Gene ontology analyses for RNA sequencing data demonstrated that genes differentially regulated by ICF were mainly associated with metabolic processes, membrane and protein binding. Topology-based analysis demonstrated that ICF induced genes in cell cycle categories and downregulated genes associated with metabolic processes. The Kyoto Encyclopedia of Genes and Genomes database revealed differentially regulated genes related to the p53 signaling pathway and cell cycle. qPCR analysis demonstrated significant upregulation of Ccnd1, Cdk6 and Ccng1. Flow cytometry showed that ICF induced cell cycle and proliferation, while reducing the number of apoptotic cells. ICF also upregulated transforming growth factor β1 (Tgfb1) at both mRNA and protein levels, and pretreatment with a TGF-β inhibitor (SB431542) prior to ICF abolished ICF-induced Ccnd1 and Cdk6 expression. Taken together, these findings show that TGF-β signaling in iPSCs enhances proliferation and decreases apoptosis in response to ICF, that could give rise to an efficient protocol to manipulate iPSCs for organoid fabrication.


Subject(s)
Animals , Mice , Apoptosis , Cell Cycle , Cell Differentiation , Embryoid Bodies , Induced Pluripotent Stem Cells/metabolism , Transforming Growth Factor beta/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL