Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Rev. biol. trop ; 52(supl.1): 127-132, sept. 2004. ilus
Article in Spanish | LILACS | ID: lil-450548

ABSTRACT

En el mes de noviembre de 2001, se aisló de una marea roja cerca de la Isla San Lucas, las diatomeas Pseudo-Nitzschia pungens f. pungens seguida por Skeletonema costatum, Chaetoceros lorenzianus y en menor concentración Thalassiosira spp. las cuales fueron caracterizadas por microscopía electrónica de rastreo y transmisión, siendo esta la primera vez que se describe la presencia de estas especies produciendo proliferaciones en Costa Rica. Actualmente existe un aumento en el reporte de mareas rojas donde predominan las diatomeas, y los conteos celulares indican el aumento en el número de las especies conocidas como Pseudo-nitzschia pungens f. multiseries. A estas se les atribuye la producción del ácido domóico, un aminoácido de bajo peso molecular. Las intoxicaciones amnésicas por mariscos (IAM) que afectan a los humanos, se producen por la ingesta de mariscos contaminados con este ácido. En Costa Rica, hasta la fecha, solo se han reportado casos de intoxicación paralítica por mariscos contaminados por los dinoflagelados Pyrodinium bahamense var. compressum y Gymnodinium catenatum, sin embargo existe la posibilidad de producirse intoxicaciones humanas por la ingesta de mariscos y peces contaminados con toxinas amnésicas las cuales son hidrosolubles y termoestables. Debe entonces considerarse el peligro potencial de aparición de casos de intoxicaciones amnésicas y se sugiere la inclusión de estas especies en los programas de monitoreo permanente para tomar las medidas preventivas de salud pública


Water samples were collected during a red tide event in November 2001, near San Lucas Island (Gulf of Nicoya, Costa Rica). Superficial temperature was 27ºC and water was turbid, with no fetid smell. One sample was treated with negative staining and observed using a transmission electron microscope (TEM); another sample was observed using a scanning electron microscope (SEM). Samples had high concentrations of the diatom Pseudo-Nitzschia pungens f. pungens (characterized by two rows of poroids in the external channel), and lower concentrations of Skeletonema costatum (chains joined by external microtubules) and Chaetoceros lorenzianus (oval apertures and long chains, having setae with distinctive transverse rows and spines). This is the first time that the first species was described producing red tides in Costa Rica. However, reports about red tides with high concentration of species like P. pungens (variety multiseries) are increasing. These species have been related to the production of domoic acid, a low molecular weight amino acid which in humans can cause amnesic intoxications with seafood. Previously, Costa Rican reports of toxic accidents only referred to seafood contaminated with Pyrodinium bahamense var. compressum and Gymnodinium catenatum dinoflagellates. The increase in the number of Pseudo-Nitzschia causing harmful algae blooms is of interest for scientists around the world and must be documented. Similarly, some Chaetoceros species have been reported to be harmful to fish. We strongly recommend the establishment of a permanent surveillance program monitoring the presence of these species new at Costa Rican Pacific coast. Since the amnesic toxin is soluble in water and heat-resistant, we want to stress the possibility of having human cases of amnesic intoxication


Subject(s)
Humans , Animals , Diatoms/pathogenicity , Dinoflagellida/microbiology , Environmental Monitoring , Eutrophication/physiology , Kainic Acid/analogs & derivatives , Cell Count , Costa Rica , Ciguatera Poisoning/complications , Diatoms/isolation & purification , Diatoms/ultrastructure , Dinoflagellida/isolation & purification , Kainic Acid/metabolism , Marine Toxins/metabolism , Neuromuscular Depolarizing Agents/metabolism , Pacific Ocean , Population Density , Phytoplankton/chemistry , Seawater/chemistry , Temperature
2.
Experimental & Molecular Medicine ; : 98-102, 2004.
Article in English | WPRIM | ID: wpr-190967

ABSTRACT

Glutamate induced rapid phosphorylation of moesin, one of ERM family proteins involved in the ligation of membrane to actin cytoskeleton, in rat hippocampal cells (JBC, 277:16576-16584, 2002). However, the identity of glutamate receptor has not been explored. Here we show that a-amino- 3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor is responsible for glutamate-induced RhoA activation and phosphorylation of moesin. Glutamate induced phosphorylation at Thr-558 of moesin was still detectible upon chelation of Ca(2+), suggesting involvement of AMPA receptor instead of N-methyl D-Aspartate (NMDA) receptor in this phosphorylation of moesin. AMPA but not NMDA- induced moesin phosphorylation was independent of Ca(2+). Both AMPA and NMDA but not Kainate induced moesin phosphorylation at similar levels. However, the kinetics of phosphorylation varied greatly between AMPA and NMDA where AMPA treatment rapidly increased phosphomoesin, which reached a maximum at 10 min after treatment and returned to a basal level at 30 min. In contrast, NMDA-induced phosphorylation of moesin reached a maximum at 30 min after treatment and was remained at higher levels at 60 min. A possible involvement of RhoA and its downstream effector, Rho kinase in the AMPA receptor-triggered phosphorylation of moesin was also explored. The kinetics for the glutamate- induced membrane translocation of RhoA was similar to that of moesin phosphorylation induced by AMPA. Moreover, Y-27632, a specific Rho kinase inhibitor, completely blocked AMPA-induced moesin phosphorylation but had no effect on NMDA-induced moesin phosphorylation. These results suggest that glutamate-induced phosphorylation of moesin may be mediated through the AMPA receptor/RhoA/Rho kinase pathway.


Subject(s)
Animals , Rats , Calcium/metabolism , Cell Line , Excitatory Amino Acid Agonists/metabolism , Glutamic Acid/metabolism , Kainic Acid/metabolism , Microfilament Proteins/metabolism , N-Methylaspartate/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism , rhoA GTP-Binding Protein/metabolism
3.
Braz. j. med. biol. res ; 31(7): 937-41, jul. 1998. graf
Article in English | LILACS | ID: lil-212876

ABSTRACT

In the present study, we report that low concentrations of the glutamate ionotropic agonist kainate decreased the turnover of [3H]-phosphoinositides ([3H]-InsPs) induced by muscarinic receptors in the chick embryonic retina. When 100 muM carbachol was used, the estimated IC50 value for kainate was 0.2 muM and the maximal inhibition of ~50 percent was obtained with 1 muM or higher concentrations of the glutamatergic agonist. Our data also show that veratridine, a neurotoxin that increases the permeability of voltage-sensitive sodium channels, had no effect on [3H]-InsPs levels of the embryonic retina. However, 50 muM veratridine, but not 50 mM KCl, inhibited ~65 percent of the retinal response to carbachol. While carbachol increased [3H]-InsPs levels from 241.2 + 38.0 to 2044.5 + 299.9 cpm/mg protein, retinal response decreased to 861.6 + 113.9 cpm/mg protein when tissues were incubated with carbachol plus veratridine. These results suggest that the accumulation of phosphoinositides induced by activation of muscarinic receptors can be inhibited by the influx of Na+ ions triggered by activation of kainate receptors or opening of voltage-sensitive sodium channels in the chick embryonic retina.


Subject(s)
Animals , Chick Embryo , Carbachol/pharmacology , Excitatory Amino Acid Agonists/pharmacology , Kainic Acid/pharmacology , Muscarinic Agonists/pharmacology , Phosphatidylinositols/metabolism , Receptors, Muscarinic/metabolism , Retina/embryology , Veratridine/pharmacology , Excitatory Amino Acid Agonists/metabolism , Glutamic Acid/pharmacology , Kainic Acid/metabolism , Potassium Chloride , Receptors, Muscarinic/drug effects , Retina/drug effects , Sodium Channels
SELECTION OF CITATIONS
SEARCH DETAIL