Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Braz. j. med. biol. res ; 51(7): e6201, 2018. tab, graf
Article in English | LILACS | ID: biblio-889119

ABSTRACT

This study aimed to investigate the role of hypoxia-inducible factor-2α (HIF-2α) in the expression of tight junction proteins and permeability alterations in rat glomerular endothelial cells (rGENCs) under hypoxia conditions. The expression level of HIF-2α and tight junction proteins (occludin and ZO-1) in rGENCs were examined following 5% oxygen density exposure at different treatment times. HIF-2α lentivirus transfection was used to knockdown HIF-2α expression. Cells were divided into four groups: 1) control group (rGENCs were cultured under normal oxygen conditions), 2) hypoxia group (rGENCs were cultured under hypoxic conditions), 3) negative control group (rGENCs were infected with HIF-2α lentivirus negative control vectors and cultured under hypoxic conditions), and 4) Len group (rGENCs were transfected with HIF-2α lentivirus and cultured under hypoxic conditions). The hypoxia, negative control, and Len groups were kept in a hypoxic chamber (5% O2, 5% CO2, and 90% N2) for 24 h and the total content of occludin and ZO-1, and the permeability of rGENCs were assessed. With increasing hypoxia time, the expression of HIF-2α gradually increased, while the expression of occludin decreased, with a significant difference between groups. ZO-1 expression gradually decreased under hypoxia conditions, but the difference between the 24 and 48 h groups was not significant. The permeability of cells increased following 24-h exposure to hypoxia compared to the control group (P<0.01). The knockdown of HIF-2α expression significantly increased occludin and ZO-1 content compared with hypoxia and negative control groups (P<0.01), while permeability was reduced (P<0.01). Hypoxia increased HIF-2α content, inducing permeability of rGENCs through the reduced expression of occludin and ZO-1.


Subject(s)
Animals , Rats , Endothelial Cells/chemistry , Basic Helix-Loop-Helix Transcription Factors/metabolism , Occludin/metabolism , Zonula Occludens-1 Protein/metabolism , Kidney Glomerulus/cytology , Permeability , Time Factors , Cell Hypoxia/physiology , Endothelial Cells/metabolism , Cell Proliferation
2.
Braz. j. med. biol. res ; 42(6): 531-536, June 2009. ilus, graf
Article in English | LILACS | ID: lil-512762

ABSTRACT

Angiotensin II (Ang II) plays a crucial role in the pathogenesis of renal diseases. The objective of the present study was to investigate the possible inflammatory effect of Ang II on glomerular endothelial cells and the underlying mechanism. We isolated and characterized primary cultures of rat glomerular endothelial cells (GECs) and observed that Ang II induced the synthesis of monocyte chemoattractant protein-1 (MCP-1) in GECs as demonstrated by Western blot. Ang II stimulation, at concentrations ranging from 0.1 to 10 µm, of rat GECs induced a rapid increase in the generation of reactive oxygen species as indicated by laser fluoroscopy. The level of p47phox protein, an NAD(P)H oxidase subunit, was also increased by Ang II treatment. These effects of Ang II on GECs were all reduced by diphenyleneiodonium (1.0 µm), an NAD(P)H oxidase inhibitor. Ang II stimulation also promoted the activation of nuclear factor-kappa B (NF-κB). Telmisartan (1.0 µm), an AT1 receptor blocker, blocked all the effects of Ang II on rat GECs. These data suggest that the inhibition of NAD(P)H oxidase-dependent NF-κB signaling reduces the increase in MCP-1 production by GECs induced by Ang II. This may provide a mechanistic basis for the benefits of selective AT1 blockade in dealing with chronic renal disease.


Subject(s)
Animals , Rats , Angiotensin II/pharmacology , /biosynthesis , Endothelial Cells/metabolism , Kidney Glomerulus/cytology , NADPH Oxidases/antagonists & inhibitors , NF-kappa B/metabolism , Angiotensin II Type 1 Receptor Blockers/pharmacology , Blotting, Western , Benzimidazoles/pharmacology , Benzoates/pharmacology , /drug effects , Endothelial Cells/drug effects , Enzyme Inhibitors/pharmacology , Inflammation/metabolism , Onium Compounds/pharmacology , Oxidative Stress/physiology , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism
3.
Journal of Korean Medical Science ; : 628-635, 2005.
Article in English | WPRIM | ID: wpr-147614

ABSTRACT

Latent transforming growth factor (TGF)-beta-binding protein (LTBP) is required for the assembly, secretion, matrix association, and activation of latent TGF-beta complex. To elucidate the cell specific expression of the genes of LTBP-1 and their splice variants and the factors that regulate the gene expression, we cultured primary human glomerular endothelial cells (HGEC) under different conditions. Basal expression of LTBP-1 mRNA was suppressed in HGEC compared to WI-38 human embryonic lung fibroblasts. High glucose, H2O2, and TGF-beta1 upregulated and vascular endothelial growth factor (VEGF) further downregulated LTBP-1 mRNA in HGEC. RT-PCR with a primer set for LTBP-1S produced many clones but no clone was gained with a primer set for LTBP-1L. Of 12 clones selected randomly, Sca I mapping and DNA sequencing revealed that only one was LTBP-1S and all the others were LTBP-1S delta 53. TGF-beta1, but not high glucose, H2O2 or VEGF, tended to increase LTBP-1S delta 53 mRNA. In conclusion, HGEC express LTBP-1 mRNA which is suppressed at basal state but upregulated by high glucose, H2O2, and TGF-beta1 and downregulated by VEGF. Major splice variant of LTBP-1 in HGEC was LTBP-1S delta 53. Modification of LTBP-1S delta 53 gene in HGEC may abrogate fibrotic action of TGF-beta1 but this requires confirmation.


Subject(s)
Humans , Alternative Splicing , Amino Acid Sequence , Cell Line , Cells, Cultured , Cloning, Molecular , Comparative Study , Endothelial Cells/drug effects , Gene Expression Regulation , Glucose/pharmacology , Hydrogen Peroxide/pharmacology , Intracellular Signaling Peptides and Proteins/genetics , Kidney Glomerulus/cytology , Protein Isoforms/genetics , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Transcription, Genetic , Transfection , Transforming Growth Factor beta/pharmacology , Vascular Endothelial Growth Factor A/pharmacology
4.
Journal of Korean Medical Science ; : 245-252, 2004.
Article in English | WPRIM | ID: wpr-67698

ABSTRACT

The presence of heparan sulfate proteoglycan (HSPG) in anionic sites in the lamina rara interna of glomerular basement membrane suggests that the proteoglycan may be deposited by the glomerular endothelial cells (GEndo). We have previously demonstrated that bovine GEndo in vitro synthesize perlecan, a species of glomerular basement membrane HSPG. In this study we examined whether high glucose medium regulates the GEndo metabolism of glycopeptides including perlecan. Metabolic labeling of glycoconjugates with 35S-SO4, sequential ion exchange and Sepharose CL-4B chromatography of labeled glycoconjugates, and northern analysis were performed. Incubation of GEndo for 8 to 14 weeks (but not for 1-2 weeks) in medium containing 30 mM glucose resulted in nearly 50% reduction in the synthesis of cell layer and medium 35SO4-labeled low anionic glycoproteins and proteoglycans, including that of basement membrane HSPG (Kav 0.42) compared to GEndo grown in 5 mM glucose medium; no changes in anionic charge density or hydrodynamic size of proteoglycans were noted. Northern analysis demonstrated that the mRNA abundance of perlecan was reduced by 47% in cells incubated with 30 mM glucose. Our data suggest that high glucose medium reduces the GEndo synthesis of perlecan by regulating its gene expression. Reduced synthesis of perlecan by GEndo may contribute to proteinuria seen in diabetic nephropathy.


Subject(s)
Animals , Cattle , Basement Membrane/drug effects , Cells, Cultured , Diabetic Nephropathies/metabolism , Endothelial Cells/cytology , Gene Expression/drug effects , Glucose/pharmacology , Heparan Sulfate Proteoglycans/genetics , Kidney Glomerulus/cytology , Sulfur Radioisotopes
5.
Experimental & Molecular Medicine ; : 65-70, 2004.
Article in English | WPRIM | ID: wpr-190972

ABSTRACT

VEGF expressed in glomerular podocytes, is known to increase vascular permeability to macromolecules. Angiotensin II can stimulate the release of VEGF, and the protective effects of angiotensin II antagonist against diabetic glomerular injury suggest that the angiotensin II-induced VEGF is an important pathogenetic mechanism in the development of proteinuria during diabetic nephropathy although this mechanism is not fully understood. In this study, the changes of VEGF expression was examined in the experimental diabetic nephropathy to determine whether these changes were modified by renoprotective intervention by blockers of angiotensin II receptors. The streptozotocin- induced diabetic rats were treated with L-158,809, a blocker of angiotensin II receptors, for 12 weeks. Age-matched rats with L-158,809 served as controls. RT-PCR and immunohistochemistry were used to assess and quantify gene and protein expression of VEGF. A progressive increase in urinary protein excretion was observed in diabetic rats. Glomerular VEGF expression was significantly higher in diabetic rats than in the control groups, with a significant reduction in glomerular VEGF expression and proteinuria in L-158,809- treated diabetic rats. VEGF mRNA was also significantly higher in diabetic kidneys than in the control groups, with a significant reduction in VEGF mRNA in L-158,809-treated diabetic kidneys. These results demonstrates that VEGF expression is significantly increased in diabetic podocytes, and angiotensin II receptor antagonist attenuated these changes in VEGF expression and prevented the development of proteinuria in vivo. Attenuation of increased VEGF expression in podocytes could contribute to the renoprotective effects of angiotensin II receptor antagonists in diabetic nephropathy.


Subject(s)
Animals , Humans , Male , Rats , Angiotensin II/antagonists & inhibitors , Antihypertensive Agents/metabolism , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/metabolism , Imidazoles/metabolism , Kidney Glomerulus/cytology , RNA, Messenger/metabolism , Random Allocation , Rats, Sprague-Dawley , Receptors, Angiotensin/metabolism , Tetrazoles/metabolism , Vascular Endothelial Growth Factor A/genetics
SELECTION OF CITATIONS
SEARCH DETAIL