Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Braz. j. biol ; 84: e257071, 2024. graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1364496

ABSTRACT

In advanced biotechnology, the utilization of enzymes to achieve new or modified compounds with antibacterial, fungicidal, and anti-cancer specifications is crucial. Mushroom lactases are a hopeful biocatalyst for the synthesis and modification of different compounds. They are an accessible and inexpensive enzyme for the preparation of reaction objects and have recently received attention. Laccase purification was performed from basidiomycete Lentinus strigosus (LS) in several stages: Stage 1. On ion-exchange chromatography on TEAE Servacell 23 (400 ml), two distinctly separated laccase activity peaks were observed, eluted from the carrier at 0.21 and 0.27 M NaCl. In order to reduce the loss of enzymes, all fractions with laccase activity were collected, concentrated, and desalted using an ultrafiltration cell (Amicon, United States) with a UM-10 membrane. Stage 2. The resulting preparation with laccase activity was applied to a Q-Sepharose column (60 ml). Two well-separated peaks with laccase activity were obtained during the elution: laccase I (0.12 M NaCl) and laccase II (0.2 M NaCl). Stage 3. In the course of further purification of both enzymes, carried out on anion-exchange carrier Resource Q (6 ml), a broken gradient was used: 0 - 10%, 10 - 20%, and 20 - 100% with 1M NaCl. Stage 4. Both laccase I and laccase II, obtained after Resource Q, were desalted, concentrated to 1 ml each, and applied to a Superdex 75 gel filtration column. As a result, two laccases were obtained in a homogeneous form.


Na biotecnologia moderna, o uso de enzimas para obter compostos novos ou modificados com propriedades antibacterianas, antifúngicas e anticancerígenas é crucial. Lactases de cogumelos são biocatalisadores promissores para síntese e modificação de diferentes compostos, por serem enzimas baratas e disponíveis para a preparação de componentes de reação, e vem recebendo a devida atenção recentemente. A purificação da lacase foi realizada a partir do basidiomiceto Lentinus strigosus em vários estágios: Etapa 1 - na cromatografia de troca iônica em TEAE Servacell 23 (400 ml), foram observados dois picos de atividade da lacase distintamente separados, com eluição do transportador a 0,21 e 0,27 M de NaCl. Para reduzir a perda de enzimas, todas as frações com atividade de lacase foram coletadas, concentradas e dessalinizadas em uma célula de ultrafiltração (Amicon, Estados Unidos) com membrana UM-10; Etapa 2 - a preparação resultante com atividade de lacase foi aplicada a uma coluna Q-Sepharose (60 ml). Durante a eluição, foram obtidos dois picos bem separados com atividade de lacase: lacase I (NaCl 0,12 M) e lacase II (NaCl 0,2 M); Etapa 3 - no decurso da purificação adicional de ambas as enzimas, realizada no Recurso Q de transportador de troca aniônica (6 ml), um gradiente quebrado foi usado: 0-10%, 10-20% e 20-100% com NaCl 1M; Etapa 4 - tanto a lacase I como a lacase II, obtidas após o Recurso Q, foram dessalinizadas e concentradas para 1 ml cada e aplicadas a uma coluna de filtração em gel Superdex 75. Como resultado, duas lacases foram obtidas de forma homogênea.


Subject(s)
Basidiomycota , Biotechnology , Laccase , Enzymes , Anti-Bacterial Agents
2.
Chinese Journal of Biotechnology ; (12): 264-274, 2022.
Article in Chinese | WPRIM | ID: wpr-927710

ABSTRACT

The laccase (PpLAC) gene family members in peach fruit were identified and the relationship between their expression pattern and chilling induced browning were investigated. The study was performed using two varieties of peaches with different chilling tolerance, treated with or without exogenous γ-aminobutyric acid (GABA) during cold storage. Twenty-six genes were screened from the peach fruit genome. These genes were distributed on 6 chromosomes and each contained 5-7 exons. The PpLAC gene family members shared relatively similar gene structure and conserved motifs, and they were classified into 7 subgroups based on the cluster analysis. Transcriptome sequencing revealed that the expression levels of PpLAC7 and PpLAC9 exhibited an increasing pattern under low temperature storage, and displayed a similar trend with the browning index of peach fruit. Notably, GABA treatment reduced the degree of browning and inhibited the expression of PpLAC7 and PpLAC9. These results suggested that PpLAC7 and PpLAC9 might be involved in the browning of peach fruit during cold storage.


Subject(s)
Food Storage , Fruit/genetics , Laccase/genetics , Prunus persica/genetics
4.
Electron. j. biotechnol ; Electron. j. biotechnol;43: 1-7, Jan. 2020. tab, graf, ilus
Article in English | LILACS | ID: biblio-1087520

ABSTRACT

Background: Textile industry not only plays a vital role in our daily life but also a prominent factor in improving global economy. One of the environmental concern is it releases huge quantities of toxic dyes in the water leading to severe environmental pollution. Bacterial laccase and azoreductase successfully oxidize complex chemical structure of nitrogen group-containing azo dyes. Additionally, the presence of textile dye infuriates bacterial peroxidase to act as a dye degrading enzyme. Our present study deals with three textile dye degrading enzymes laccase, azoreductase, and peroxidase through analyzing their structural and functional properties using standard computational tools. Result: According to the comparative analysis of physicochemical characteristics, it was clear that laccase was mostly made up of basic amino acids whereas azoreductase and peroxidase both comprised of acidic amino acids. Higher aliphatic index ascertained the thermostability of all these three enzymes. Negative GRAVY value of the enzymes confirmed better water interaction of the enzymes. Instability index depicted that compared to laccase and preoxidase, azoreductase was more stable in nature. It was also observed that the three model proteins had more than 90% of total amino acids in the favored region of Ramachandran plot. Functional analysis revealed laccase as multicopper oxidase type enzyme and azoreductase as FMN dependent enzyme, while peroxidase consisted of α-ß barrel with additional haem group. Conclusion: Present study aims to provide knowledge on industrial dye degrading enzymes, choosing the suitable enzyme for industrial set up and to help in understanding the experimental laboratory requirements as well.


Subject(s)
Azo Compounds/metabolism , Peroxidase/chemistry , Laccase/chemistry , NADH, NADPH Oxidoreductases/chemistry , Temperature , Azo Compounds/chemistry , Textile Industry , Biodegradation, Environmental , Computer Simulation , Enzyme Stability , Peroxidase/metabolism , Lactase/metabolism , Coloring Agents/metabolism , NADH, NADPH Oxidoreductases/metabolism
5.
Acta sci., Biol. sci ; Acta sci., Biol. sci;42: e52699, fev. 2020. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1460910

ABSTRACT

Laccases are oxidoreductase enzymes that have the ability to oxidize phenolic substrates. Its biotechnological potential has been greatly explored in many areas as biotechnology industry, bioremediation of dyes, food industry and environmental microbiology. The aim of this study was maximize the laccase production by Pleurotus pulmonarius (Fr.) Quélet in solid-state fermentation (SSF) using orange waste as substrate. After optimization the capability of the crude laccase to decolorize dyes was analyzed. The fermentation medium in the solid-state was optimized by applying a factorial design. After statistics optimization, laccase activity increased two times. The laccase activity appears to be correlated with the ability of crude extract to decolorize some industrial dyes. The optimized laccase was characterized with respect to optimum pH, influence of temperature and salts. Our results demonstrate that P. pulmonarius was an efficient producer of an important industrial enzyme, laccase, in a cheap solid-state system using orange waste as substrate.


Subject(s)
Citrus sinensis/microbiology , Citrus sinensis/chemistry , Laccase , Pleurotus
6.
Braz. arch. biol. technol ; Braz. arch. biol. technol;63: e20190015, 2020. tab, graf
Article in English | LILACS | ID: biblio-1132271

ABSTRACT

Abstract (1) Background: Oxygen supply is an important parameter to be considered in submerged cultures. This study evaluated the influence of different conditions for dissolved oxygen (DO) concentration on laccases activities and growth of Pleurotus sajor-caju PS-2001 in submerged process in stirred-tank bioreactor. (2) Methods: Initially, three different conditions were tested: uncontrolled DO and minimum levels of 30% and 80% of saturation, with the pH controlled between 4.5 and 7.0. (3) Results: Best results were observed at 30% DO (26 U mL-1 of laccases at 96 h), whereas higher mycelial biomass was observed at 30% and 80% DO (above 4.5 g L-1). Four different conditions of DO (uncontrolled, 10%, 30% and 50% of saturation) were tested at pH 6.5, with higher laccases activity (80 U mL-1 at 66 h) and lower mycelial growth (1.36 g L-1 at 90 h) being achieved with DO of 30%. In this test, the highest values for volumetric productivity and specific yield factor were determined. Under the different pH conditions tested, the production of laccases is favoured at DO concentration of 30% of saturation, while superior DO levels favours fungal growth. (4) Conclusion: The results indicate that dissolved oxygen concentration is a critical factor for the culture of P. sajor-caju PS-2001 and has important effects not only on laccases production but also on fungal growth.


Subject(s)
Dissolved Oxygen , Biomass , Bioreactors , Pleurotus/growth & development , Pleurotus/enzymology , Laccase/biosynthesis
7.
Mycobiology ; : 217-229, 2019.
Article in English | WPRIM | ID: wpr-760537

ABSTRACT

Two manganese peroxidases (MnPs), MnP1 and MnP2, and a laccase, Lac1, were purified from Trametes polyzona KU-RNW027. Both MnPs showed high stability in organic solvents which triggered their activities. Metal ions activated both MnPs at certain concentrations. The two MnPs and Lac1, played important roles in dye degradation and pharmaceutical products deactivation in a redox mediator-free system. They completely degraded Remazol brilliant blue (25 mg/L) in 10–30 min and showed high degradation activities to Remazol navy blue and Remazol brilliant yellow, while Lac1 could remove 75% of Remazol red. These three purified enzymes effectively deactivated tetracycline, doxycycline, amoxicillin, and ciprofloxacin. Optimal reaction conditions were 50 °C and pH 4.5. The two MnPs were activated by organic solvents and metal ions, indicating the efficacy of using T. polyzona KU-RNW027 for bioremediation of aromatic compounds in environments polluted with organic solvents and metal ions with no need for redox mediator supplements.


Subject(s)
Amoxicillin , Biodegradation, Environmental , Ciprofloxacin , Doxycycline , Hydrogen-Ion Concentration , Ions , Laccase , Manganese , Oxidation-Reduction , Peroxidases , Pharmaceutical Preparations , Solvents , Tetracycline , Trametes
8.
Chinese Journal of Biotechnology ; (12): 226-235, 2019.
Article in Chinese | WPRIM | ID: wpr-771384

ABSTRACT

Pitch deposits have negative effects on product quality, machine performance and production line profitability during pulp and paper manufacture. As traditional pitch control technology cannot provide satisfactory solutions in the pitch deposits, the enzymatic treatment has been rapidly developed for its high efficiency and pollution-free property. In this review, the chemical composition and present form of the pitch in pulp is first introduced, followed by a description of the pitch control enzymes. The emphasis is on the current research on enzymatic solutions to pitch problems, including the reaction mechanism, technology, and the present main problems of lipase, sterol esterases, laccase and lipoxygenase. Finally, the technology prospects in this field are proposed.


Subject(s)
Laccase , Lipase , Lipoxygenase , Paper
9.
Braz. arch. biol. technol ; Braz. arch. biol. technol;62: e19180338, 2019. tab, graf
Article in English | LILACS | ID: biblio-1011519

ABSTRACT

(1) Background: In this study, the effects of different pH values ​​(2.4, 3.2, 4.4 and 5.0), temperatures (30, 35, 40, 45 and 50°C) and agitation (100 rpm) on the enzymatic decolourisation of twenty-two dyes belonging to the chromophore groups anthraquinone, azo and triphenylmethane were assessed. (2) Methods: In all conditions, it was used a crude enzyme broth containing 30 U mL-1 laccases produced by Pleurotus sajor-caju PS-2001 in submerged process. (3) Results: Regarding the effects of pH values, the best results were obtained at pH 3.2 and 30°C, in which bleaching was observed for all dyes evaluated. In assays conducted at different temperatures, highest levels of decolourisation were observed at 35°C and pH 3.2 for nineteen of the dyes assessed. Thirteen dyes presented colour reduction exceeding 50% after the enzymatic treatment, including all acid and all disperse dyes evaluated. The reciprocal agitation of 100 rpm promoted negative effect on decolourisation. (4) Conclusion: From the results achieved, one can conclude that the laccase-containing preparation of P. sajor-caju PS-2001 has potential for the decolourisation of some dyes widely used in different industrial sectors, especially in the textile industry, and therefore could be used in future strategies for the biotreatment of coloured wastes.


Subject(s)
Pleurotus/chemistry , Laccase , Bleaching Agents , Azo Compounds , Trityl Compounds , Anthraquinones
10.
Braz. j. biol ; Braz. j. biol;78(4): 718-727, Nov. 2018. tab, graf
Article in English | LILACS | ID: biblio-951607

ABSTRACT

Abstract In this work we have assessed the decolorization of textile effluents throughout their treatment in a solid-state fermentation (SSF) system. SSF assays were conducted with peach-palm (Bactris gasipaes) residue using the white rot fungus Ganoderma lucidum EF 31. The influence of the dye concentration and of the amounts of peach-palm residue and liquid phase on both the discoloration efficiency and enzyme production was studied. According to our results, independently of experimental conditions employed, laccase was the main ligninolytic enzyme produced by G. lucidum. The highest laccase activity was obtained at very low effluent concentrations, suggesting the existence of an inhibitory effect of higher concentrations on fungal metabolism. The highest percentage of color removal was reached when 10 grams of peach palm residue was moistened with 60 mL of the final effluent. In control tests carried out with the synthetic dye Remazol Brilliant Blue R (RBBR) decolorization efficiencies about 20% higher than that achieved with the industrial effluent were achieved. The adsorption of RBBR on peach-palm residue was also investigated. Equilibrium tests showed that the adsorption of this dye followed both Langmuir and Freundlich isotherms. Hence, our experimental results indicate that peach-palm residue is suitable substrate for both laccase production and color removal in industrial effluents.


Resumo Neste trabalho, avaliamos a descoloração de efluentes têxteis durante seu tratamento em um sistema de fermentação em estado sólido (SSF). Os ensaios foram conduzidos com resíduo de pupunha (Bactris gasipaes) utilizando o fungo de podridão branca Ganoderma lucidum EF 31. A influência da concentração de corante, as quantidades de resíduo e da fase líquida foram estudadas tanto na eficiência de descoloração como na produção de enzima. De acordo com os resultados, independentemente das condições experimentais utilizadas, a lacase foi a principal enzima ligninolítica produzida por G. lucidum. A atividade de lacase mais elevada foi obtida em baixas concentrações de efluentes, sugerindo um efeito inibitório no metabolismo fúngico. A maior remoção de cor foi obtida com 10 gramas de resíduo da pupunha e 60 mL do efluente final. Nos ensaios de controle realizados com o corante sintético RBBR, foram atingidos cerca de 20% mais descoloração do que os obtidos com o efluente industrial. A adsorção de RBBR no resíduo de pupunha também foi investigada. Os testes de equilíbrio mostraram que a adsorção deste corante seguiu as isotermas de Langmuir e Freundlich. Assim, os resultados experimentais indicam que o resíduo de pupunha é um substrato adequado tanto para a produção de lacase quanto para a remoção de cor em efluentes industriais.


Subject(s)
Textile Industry/methods , Biodegradation, Environmental , Reishi/enzymology , Arecaceae/chemistry , Laccase/chemistry , Wastewater/chemistry , Anthraquinones , Color , Adsorption , Coloring Agents/chemistry , Fermentation
11.
IBJ-Iranian Biomedical Journal. 2018; 22 (3): 202-209
in English | IMEMR | ID: emr-192469

ABSTRACT

Background: Phenolic compounds, which are produced routinely by industrial and urban activities, possess dangers to live organisms and environment. Laccases are oxidoreductase enzymes with the ability of remediating a wide variety of phenolic compounds to more benign molecules. The purpose of the present research is surface display of a laccase enzyme with adhesin involved in diffuse adhesion [AIDA-I] autotransporter system on the surface of Escherichia coli cells for bioremediation of phenolic compounds


Methods: The expression of laccase was regulated by a phenol-responsive promoter [a 54 promoter]. The constitutively-expressed CapR transcription activator was able to induce laccase expression in the presence of phenolic compounds


Results: Western blot analysis showed the expression and correct transfer of the enzyme to the outer membrane of E. coli cells in the presence of phenol. Activity assay confirmed the correct folding of the enzyme after translocation through the autotransporter system. HPLC analysis of residual phenol in culture medium showed a significant reduction of phenol concentration in the presence of cells displaying laccase on the surface


Conclusion: Our findings confirm that autodisplay enables functional surface display of laccase for direct substrate-enzyme availability by overcoming membrane hindrance


Subject(s)
Cell Surface Display Techniques , Laccase/genetics , Phenols , Adhesins, Escherichia coli , Chromatography, High Pressure Liquid
12.
Mycobiology ; : 396-406, 2018.
Article in English | WPRIM | ID: wpr-729736

ABSTRACT

A newly isolated white rot fungal strain KU-RNW027 was identified as Trametes polyzona, based on an analysis of its morphological characteristics and phylogenetic data. Aeration and fungal morphology were important factors which drove strain KU-RNW027 to secrete two different ligninolytic enzymes as manganese peroxidase (MnP) and laccase. Highest activities of MnP and laccase were obtained in a continuous shaking culture at 8 and 47 times higher, respectively, than under static conditions. Strain KU-RNW027 existed as pellets and free form mycelial clumps in submerged cultivation with the pellet form producing more enzymes. Fungal biomass increased with increasing amounts of pellet inoculum while pellet diameter decreased. Strain KU-RNW027 formed terminal chlamydospore-like structures in cultures inoculated with 0.05 g/L as optimal pellet inoculum which resulted in highest enzyme production. Enzyme production efficiency of T. polyzona KU-RNW027 depended on fungal pellet morphology as size, porosity, and formation of chlamydospore-like structures.


Subject(s)
Biomass , Laccase , Manganese , Peroxidase , Porosity , Trametes
13.
Mycobiology ; : 224-235, 2018.
Article in English | WPRIM | ID: wpr-729776

ABSTRACT

Temperature is an important environmental factor that can greatly influence the cultivation of Auricularia cornea. In this study, lignin peroxidase, laccase, manganese peroxidase, and cellulose in A. cornea fruiting bodies were tested under five different temperatures (20 °C, 25 °C, 30 °C, 35 °C, and 40 °C) in three different culture periods (10 days, 20 days and 30 days). In addition, the V4 region of bacterial 16S rRNA genes in the substrate of A. cornea cultivated for 30 days at different temperatures were sequenced using next-generation sequencing technology to explore the structure and diversity of bacterial communities in the substrate. Temperature and culture days had a significant effect on the activities of the four enzymes, and changes in activity were not synchronized with changes in temperature and culture days. Overall, we obtained 487,694 sequences from 15 samples and assigned them to 16 bacterial phyla. Bacterial community composition and structure in the substrate changed when the temperature was above 35 °C. The relative abundances of some bacteria were significantly affected by temperature. A total of 35 genera at five temperatures in the substrate were correlated, and 41 functional pathways were predicted in the study. Bacterial genes associated with the membrane transport pathway had the highest average abundance (16.16%), and this increased at 35 °C and 40 °C. Generally, different temperatures had impacts on the physiological activity of A. cornea and the bacterial community in the substrate; therefore, the data presented herein should facilitate cultivation of A. cornea.


Subject(s)
Bacteria , Cellulose , Cornea , Fruit , Genes, Bacterial , Genes, rRNA , Laccase , Lignin , Manganese , Membranes , Peroxidase
14.
Mycobiology ; : 79-83, 2018.
Article in English | WPRIM | ID: wpr-729998

ABSTRACT

Azo dyes containing effluents from different industries pose threats to the environment. Though there are physico-chemical methods to treat such effluents, bioremediation is considered to be the best eco-compatible technique. In this communication, we discuss the decolorization potentiality of five azo dyes by Podoscypha elegans (G. Mey.) Pat., a macro-fungus, found growing on the leaf-litter layer of Bethuadahari Wildlife Sanctuary in West Bengal, India. The fungus exhibited high laccase and very low manganese peroxidase activities under different culture conditions. Decolorization of five high-molecular weight azo dyes, viz., Orange G, Congo Red, Direct Blue 15, Rose Bengal and Direct Yellow 27 by the fungus was found to be positive in all cases. Maximum and minimum mean decolorization percentages were recorded in Rose Bengal (70.41%) and Direct Blue 15 (24.8%), respectively. This is the first record of lignolytic study and dye decolorization by P. elegans.


Subject(s)
Azo Compounds , Biodegradation, Environmental , Citrus sinensis , Congo Red , Fungi , India , Laccase , Manganese , Peroxidase , Rose Bengal
15.
Arq. Inst. Biol ; 85: e1022017, 2018. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-999077

ABSTRACT

Bisphenol-A is currently considered an environmental pollutant, capable of interfering in the endocrine system of organisms and causing alterations in its development and reproductive system. An alternative method to the chemical treatment of this pollutant has been the use of oxidative enzymes, especially laccases produced by fungi. In order to reduce production costs, agro-industrial waste can be used in the culture medium composition. Nonionic surfactants, which are only slightly toxic to biological membranes, can be applied, as well as Tween 80, to facilitate the excretion of these enzymes into the culture medium. The objectives of this work were: a) characterize the immersion water of banana straw used in the formulation of the culture medium; b) evaluate laccase production by Pleurotus sajor-caju in culture medium with and without addition of Tween 80, through shaken flasks; c) evaluate the efficiency of the crude enzyme broth in degrading bisphenol-A. The shaken flasks were incubated at 30°C for 12 days. The immersion water had a C:N ratio of 13.8, ash percentage of 28.6%, and pH close to neutrality. The addition of Tween 80 on the culture medium (7.5%, m/v) yielded laccase activity and productivity values equal to 3,016.47 U L-1 and 502.7 U L-1 day-1, respectively. These values were 50 and 33.5 times higher than those obtained in the culture medium without addition of Tween 80 for laccase activity and productivity, respectively. The crude enzyme broth degraded 100% of bisphenol-A after 48 hours, regardless of concentration (500, 750 and 1,000 mg L-1).(AU)


O bisfenol-A é considerado um poluente ambiental capaz de interferir no sistema endócrino dos organismos, ocasionando alterações em seu desenvolvimento e sistema de reprodução. Um método alternativo ao tratamento químico desse tipo de poluente tem sido a utilização de enzimas oxidativas, especialmente as lacases, produzidas por fungos. A fim de diminuir custos de produção, resíduos agroindustriais podem compor o meio de cultivo. Assim, surfactantes não iônicos e pouco tóxicos para as membranas biológicas, como o Tween 80, podem ser utilizados para facilitar a excreção dessas enzimas para o meio de cultivo. Os objetivos deste trabalho foram: caracterizar quimicamente o resíduo água de imersão de palha de bananeira, usado na formulação do meio de cultivo; avaliar a produção de lacase por Pleurotus sajor-caju em meio de cultivo líquido (frascos Erlenmeyer) com e sem adição de Tween 80; e avaliar a eficiência do caldo enzimático bruto em degradar bisfenol-A. Os frascos foram incubados a 30°C, por 12 dias. A água de imersão apresentou relação C:N 13,8, percentual de cinzas 28,6% e pH próximo da neutralidade. O cultivo adicionado de Tween 80 (7,5%, m/v) propiciou valores de atividade e produtividade em lacase iguais a 3.016,47 U L-1 e 502,7 U L-1 dia-1, respectivamente. Esses valores são 50 e 33,5 vezes maiores que os obtidos no cultivo sem adição de Tween 80, para atividade e produtividade em lacase, respectivamente. O caldo enzimático bruto degradou 100% do bisfenol-A após 48 horas, independentemente da concentração (500, 750 e 1.000 mg L-1).(AU)


Subject(s)
Polysorbates , Surface-Active Agents , Pleurotus , Endocrine System , Musa , Laccase , Environmental Pollutants , Enzymes
16.
Braz. j. microbiol ; Braz. j. microbiol;49(supl.1): 269-275, 2018. tab, graf
Article in English | LILACS | ID: biblio-974344

ABSTRACT

ABSTRACT Fusarium oxysporum f. sp. lycopersici is a phytopathogenic fungus that causes vascular wilt in tomato plants. In this work we analyze the influence of metal salts such as iron and copper sulphate, as well as that of bathophenanthrolinedisulfonic acid (iron chelator) and bathocuproinedisulfonic acid (copper chelator) on the activity of laccases in the intra (IF) and extracellular fractions (EF) of the wild-type and the non-pathogenic mutant strain (rho1::hyg) of F. oxysporum. The results show that laccase activity in the IF fraction of the wild and mutant strain increased with the addition of iron chelator (53.4 and 114.32%; respectively). With copper, it is observed that there is an inhibition of the activity with the addition of CuSO4 for the EF of the wild and mutant strain (reduction of 82 and 62.6%; respectively) and for the IF of the mutant strain (54.8%). With the copper chelator a less laccase activity in the IF of the mutant strain was observed (reduction of 53.9%). The results obtained suggest a different regulation of intracellular laccases in the mutant strain compared with the wild type in presence of CuSO4 and copper chelator which may be due to the mutation in the rho gene.


Subject(s)
Fungal Proteins/metabolism , Copper/metabolism , Laccase/metabolism , Fusarium/enzymology , Iron/metabolism , Plant Diseases/microbiology , Fungal Proteins/genetics , Fungal Proteins/chemistry , Solanum lycopersicum/microbiology , Laccase/genetics , Laccase/chemistry , Fusarium/genetics , Fusarium/chemistry
17.
Electron. j. biotechnol ; Electron. j. biotechnol;28: 7-13, July. 2017. tab, graf, ilus
Article in English | LILACS | ID: biblio-1015723

ABSTRACT

Background: Laccases are copper-containing enzymes which have been used as green biocatalysts for many industrial processes. Although bacterial laccases have high stabilities which facilitate their application under harsh conditions, their activities and production yields are usually very low. In this work, we attempt to use a combinatorial strategy, including site-directed mutagenesis, codon and cultivation optimization, for improving the productivity of a thermo-alkali stable bacterial laccase in Pichia pastoris. Results: A D500G mutant of Bacillus licheniformis LS04 laccase, which was constructed by site-directed mutagenesis, demonstrated 2.1-fold higher activity when expressed in P. pastoris. The D500G variant retained similar catalytic characteristics to the wild-type laccase, and could efficiently decolorize synthetic dyes at alkaline conditions. Various cultivation factors such as medium components, pH and temperature were investigated for their effects on laccase expression. After cultivation optimization, a laccase activity of 347 ± 7 U/L was finally achieved for D500G after 3 d of induction, which was about 9.3 times higher than that of wild-type enzyme. The protein yield under the optimized conditions was about 59 mg/L for D500G. Conclusions: The productivity of the thermo-alkali stable laccase from B. licheniformis expressed in P. pastoris was significantly improved through the combination of site-directed mutagenesis and optimization of the cultivation process. The mutant enzyme retains good stability under high temperature and alkaline conditions, and is a good candidate for industrial application in dye decolorization.


Subject(s)
Pichia/metabolism , Laccase/biosynthesis , Laccase/genetics , Bacillus licheniformis/enzymology , Temperature , Yeasts , Enzyme Stability , Catalysis , Mutagenesis , Laccase/metabolism , Coloring Agents/metabolism , Hydrogen-Ion Concentration
18.
Rev. argent. microbiol ; Rev. argent. microbiol;49(2): 189-196, jun. 2017. tab, graf
Article in Spanish | LILACS | ID: biblio-957998

ABSTRACT

El paraquat es un herbicida utilizado ampliamente en la agricultura. Debido a su gran distribución y uso inadecuado, representa un problema grave de contaminación del suelo y el agua. Se ha encontrado que los hongos de la podredumbre blanca son capaces de degradar compuestos contaminantes que poseen estructuras similares a la lignina, como es el caso del paraquat. En el presente trabajo se evaluó la degradación de este herbicida y su efecto en la producción de enzimas ligninolíticas por parte de algunos hongos de la podredumbre blanca aislados del sur de México. Seis cepas fúngicas mostraron tolerancia al herbicida durante el cultivo en medio sólido. Tres de las 6 cepas evaluadas, correspondientes a las especies Polyporus tricholoma, Cilindrobasidium laeve y Deconica citrispora, mostraron niveles de degradación del 32, el 26 y el 47%, en ese orden, a los 12 días de cultivo en presencia del xenobiótico. Se detectó un incremento en las actividades de las enzimas lacasa y Mn-peroxidasa en las cepas que presentaron el mayor porcentaje de degradación, probablemente asociado a la disminución del herbicida. Adicionalmente, se realizaron ensayos con extractos enzimáticos procedentes del medio de cultivo extracelular de las 2 cepas que presentaron mayor degradación. Después de 24 h de incubación, se obtuvo una degradación del 49% del paraquat inicial con los extractos de D. citrispora. Los resultados obtenidos indican que la degradación del herbicida estaría asociada a la presencia de enzimas extracelulares en los hongos de la podredumbre blanca. En este trabajo se muestran las primeras evidencias del potencial de biodegradación de diferentes especies de hongos de la pudrición blanca.


Paraquat is a widely used herbicide in agriculture. Its inappropriate use and wide distribution represents a serious pollution problem for soil and water. White rot fungi are capable of degrading pollutants having a similar structure to that of lignin, such as paraquat. This study evaluated the degradation effect of paraquat on the production of ligninolytic enzymes by white rot fungi isolated from the South of Mexico. Six fungal strains showed tolerance to the herbicide in solid culture. Three of the six evaluated strains showed levels of degradation of 32, 26 and 47% (Polyporus tricholoma, Cilindrobasidium laeve and Deconica citrispora, respectively) after twelve days of cultivation in the presence of the xenobiotic. An increase in laccase and manganese peroxidase (MnP) activities was detected in the strains showing the highest percentage of degradation. Experiments were done with enzyme extracts from the extracellular medium with the two strains showing more degradation potential and enzyme production. After 24 hours of incubation, a degradation of 49% of the initial paraquat concentration was observed for D. citrispora. These results suggest that paraquat degradation can be attributed to the presence of extracellular enzymes from white rot fungi. In this work the first evidence of the biodegradation potential of D. citrispora and Cilindrobasidium leave is shown.


Subject(s)
Paraquat , Peroxidases , Fungi , Herbicides , Paraquat/metabolism , Biodegradation, Environmental , Laccase , Fungi/enzymology , Herbicides/metabolism , Lignin , Mexico
19.
Mycobiology ; : 379-384, 2017.
Article in English | WPRIM | ID: wpr-729650

ABSTRACT

In mating of Lentinula edodes, dikaryotic strains generated from certain monokaryotic strains such as the B2 used in this study tend to show better quality of fruiting bodies regardless of the mated monokaryotic strains. Unlike B2, dikaryotic strains generated from B16 generally show low yields, with deformed or underdeveloped fruiting bodies. This indicates that the two nuclei in the cytoplasm do not contribute equally to the physiology of dikaryotic L. edodes, suggesting an expression bias in the allelic genes of the two nuclei. To understand the role of each nucleus in dikaryotic strains, we investigated single nucleotide polymorphisms (SNPs) in laccase genes of monokaryotic strains to reveal nuclear origin of the expressed mRNAs in dikaryotic strain. We performed reverse transcription PCR (RT-PCR) analysis using total RNAs extracted from dikaryotic strains (A5B2, A18B2, and A2B16) as well as from compatible monokaryotic strains (A5, A18, and B2 for A5B2 and A18B2; A2 and B16 for A2B16). RT-PCR results revealed that Lcc1, Lcc2, Lcc4, Lcc7, and Lcc10 were the mainly expressed laccase genes in the L. edodes genome. To determine the nuclear origin of these laccase genes, the genomic DNA sequences in monokaryotic strains were analyzed, thereby revealing five SNPs in Lcc4 and two in Lcc7. Subsequent sequence analysis of laccase mRNAs expressed in dikaryotic strains revealed that these were almost exclusively expressed from B2-originated nuclei in A5B2 and A18B2 whereas B16 nucleus did not contribute to laccase expression in A2B16 strain. This suggests that B2 nucleus dominates the expression of allelic genes, thereby governing the physiology of dikaryons.


Subject(s)
Base Sequence , Bias , Cytoplasm , Fruit , Genome , Laccase , Lentinula , Physiology , Polymerase Chain Reaction , Polymorphism, Single Nucleotide , Reverse Transcription , RNA , RNA, Messenger , Sequence Analysis , Shiitake Mushrooms
20.
Rev. argent. microbiol ; Rev. argent. microbiol;48(4): 274-278, dic. 2016. ilus, graf, tab
Article in English | LILACS | ID: biblio-1041762

ABSTRACT

Knowledge regarding the enzymatic machinery of fungi is decisive to understand their ecological role. The species of the genus Geastrum are known to grow extremely slowly in pure culture, which makes it difficult to evaluate physiological parameters such as enzyme activity. Qualitative assays were performed on isolates of four species of this genus, showing evidence of laccase, cellulase, pectinase, amylase and lipase activity and suggesting that a wide range of carbon sources can be exploited by these species. For the first time in this genus, quantitative assays verified manganese peroxidase activity (up to 0.6 mU/g) in 30-day old cultures, as well as laccase, β-glycosidase and β-xylosidase activities.


El conocimiento de la maquinaria enzimática de un hongo es decisivo para entender su rol ecológico. Las especies del género Geastrum son conocidas por su crecimiento extremadamente lento en cultivos puros, lo que hace difícil la evaluación de parámetros fisiológicos como las actividades enzimáticas. Se realizaron ensayos cualitativos sobre aislamientos de 4 especies de este género, mostrando evidencias de actividades lacasa, celulasa, pectinasa, amilasa y lipasa, mostrando el amplio rango de fuentes de carbono que pueden ser explotadas por estas especies. Ensayos cuantitativos verificaron por primera vez en este género la actividad manganeso peroxidasa (hasta 0,6 mU/g) en cultivos de 30 días, así como también β-glucosidasa y β-xilosidasa.


Subject(s)
Fungi/enzymology , Xylosidases/isolation & purification , Biotransformation/physiology , Cellulase/isolation & purification , Laccase/isolation & purification , Fungi/physiology , Lipase/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL