Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Chinese Journal of Biotechnology ; (12): 4254-4265, 2021.
Article in Chinese | WPRIM | ID: wpr-921503

ABSTRACT

Leucine dehydrogenase (LDH) is the key rate-limiting enzyme in the production of L-2-aminobutyric acid (L-2-ABA). In this study, we modified the C-terminal Loop region of this enzyme to improve the specific enzyme activity and stability for efficient synthesis of L-2-ABA. Using molecular dynamics simulation of LDH, we analyzed the change of root mean square fluctuation (RMSF), rationally designed the Loop region with greatly fluctuated RMSF, and obtained a mutant EsLDHD2 with a specific enzyme activity 23.2% higher than that of the wild type. Since the rate of the threonine deaminase-catalyzed reaction converting L-threonine into 2-ketobutyrate was so fast, the multi-enzyme cascade catalysis system became unbalanced. Therefore, the LDH and the formate dehydrogenase were double copied in a new construct E. coli BL21/pACYCDuet-RM. Compared with E. coli BL21/pACYCDuet-RO, the molar conversion rate of L-2-ABA increased by 74.6%. The whole cell biotransformation conditions were optimized and the optimal pH, temperature and substrate concentration were 7.5, 35 °C and 80 g/L, respectively. Under these conditions, the molar conversion rate was higher than 99%. Finally, 80 g and 40 g L-threonine were consecutively fed into a 1 L reaction mixture under the optimal conversion conditions, producing 97.9 g L-2-ABA. Thus, this strategy provides a green and efficient synthesis of L-2-ABA, and has great industrial application potential.


Subject(s)
Aminobutyrates , Escherichia coli/genetics , Leucine Dehydrogenase/genetics , Threonine Dehydratase
2.
Electron. j. biotechnol ; 47: 83-88, sept. 2020. graf, ilus
Article in English | LILACS | ID: biblio-1253097

ABSTRACT

BACKGROUND: L-tert-Leucine has been widely used in pharmaceutical, chemical, and other industries as a vital chiral intermediate. Compared with chemical methods, enzymatic methods to produce L-tert-leucine have unparalleled advantages. Previously, we found a novel leucine dehydrogenase from the halophilic thermophile Laceyella sacchari (LsLeuDH) that showed good thermostability and great potential for the synthesis of L-tertleucine in the preliminary study. Hence, we manage to use the LsLeuDH coupling with a formate dehydrogenase from Candida boidinii (CbFDH) in the biosynthesis of L-tert-leucine through reductive amination in the present study. RESULT: The double-plasmid recombinant strain exhibited higher conversion than the single-plasmid recombinant strain when resting cells cultivated in shake flask for 22 h were used. Under the optimized conditions, the double-plasmid recombinant E. coli BL21 (pETDute-FDH-LDH, pACYCDute-FDH) transformed 1 mol·L-1 trimethylpyruvate (TMP) completely into L-tert-leucine with greater than 99.9% ee within 8 h. CONCLUSIONS: The LsLeuDH showed great ability to biosynthesize L-tert-leucine. In addition, it provided a new option for the biosynthesis of L-tert-leucine.


Subject(s)
Leucine Dehydrogenase/metabolism , Bacillales/enzymology , Leucine/biosynthesis , Temperature , Recombinant Proteins , Escherichia coli , Hydrogen-Ion Concentration
3.
Chinese Journal of Biotechnology ; (12): 782-791, 2020.
Article in Chinese | WPRIM | ID: wpr-826898

ABSTRACT

L-2-aminobutyric acid (L-ABA) is an important chemical raw material and chiral pharmaceutical intermediate. The aim of this study was to develop an efficient method for L-ABA production from L-threonine using a trienzyme cascade route with Threonine deaminase (TD) from Escherichia. coli, Leucine dehydrogenase (LDH) from Bacillus thuringiensis and Formate dehydrogenase (FDH) from Candida boidinii. In order to simplify the production process, the activity ratio of TD, LDH and FDH was 1:1:0.2 after combining different activity ratios in the system in vitro. The above ratio was achieved in the recombinant strain E. coli 3FT+L. Moreover, the transformation conditions were optimized. Finally, we achieved L-ABA production of 68.5 g/L with a conversion rate of 99.0% for 12 h in a 30-L bioreactor by whole-cell catalyst. The environmentally safe and efficient process route represents a promising strategy for large-scale L-ABA production in the future.


Subject(s)
Aminobutyrates , Bacillus thuringiensis , Candida , Escherichia coli , Formate Dehydrogenases , Metabolism , Leucine Dehydrogenase , Metabolism , Threonine , Metabolism , Threonine Dehydratase , Metabolism
4.
Chinese Journal of Biotechnology ; (12): 992-1001, 2020.
Article in Chinese | WPRIM | ID: wpr-826877

ABSTRACT

In this study, Escherichia coli BL21 (DE3) was used as the host to construct 2 recombinant E. coli strains that co-expressed leucine dehydrogenase (LDH, Bacillus cereus)/formate dehydrogenase (FDH, Ancylobacter aquaticus), or leucine dehydrogenase (LDH, Bacillus cereus)/alcohol dehydrogenase (ADH, Rhodococcus), respectively. L-2-aminobutyric acid was then synthesized by L-threonine deaminase (L-TD) with LDH-FDH or LDH-ADH by coupling with two different NADH regeneration systems. LDH-FDH process and LDH-ADH process were optimized and compared with each other. The optimum reaction pH of LDH-FDH process was 7.5, and the optimum reaction temperature was 35 °C. After 28 h, the concentration of L-2-aminobutyric acid was 161.8 g/L with a yield of 97%, when adding L-threonine in batches for controlling 2-ketobutyric acid concentration less than 15 g/L and using 50 g/L ammonium formate, 0.3 g/L NAD+, 10% LDH-FDH crude enzyme solution (V/V) and 7 500 U/L L-TD. The optimum reaction pH of LDH-ADH process was 8.0, and the optimum reaction temperature was 35 °C. After 24 h, the concentration of L-2-aminobutyric acid was 119.6 g/L with a yield of 98%, when adding L-threonine and isopropanol (1.2 times of L-threonine) in batches for controlling 2-ketobutyric acid concentration less than 15 g/L, removing acetone in time and using 0.3 g/L NAD⁺, 10% LDH-ADH crude enzyme solution (V/V) and 7 500 U/L L-TD. The process and results used in this paper provide a reference for the industrialization of L-2-aminobutyric acid.


Subject(s)
Aminobutyrates , Metabolism , Escherichia coli , Genetics , Formate Dehydrogenases , Metabolism , Leucine Dehydrogenase , Metabolism , NAD , Metabolism
5.
Chinese Journal of Biotechnology ; (12): 268-272, 2007.
Article in Chinese | WPRIM | ID: wpr-325381

ABSTRACT

The purification and the characteristics of an enzyme from Morganella morganii J-8, which could produce d-pseudoephedrine from 1-phenyl-2-methylamine-acetone, were performed in this study. In this research, first, cells were disrupted by ultrasonic treatment at 4 degrees C. The carbonyl enantioselective reductase was purified with a combination of ammonium precipitation, Phenyl Superose hydrophobic chromatography, DEAE anion exchange, and native polyacrylamide gel electrophoresis. The molecular mass of the purified enzyme subunit was estimated to be 42.5kD on sodium dodecyl sulfate-polyacrylamide electrophoresis (SDS-PAGE). The native molecular mass of the enzyme that was analyzed by high-performance liquid chromatography was found out to be 84.1 kD, which indicated that the enzyme was a dimmer. The purified enzyme was analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and the result showed that the purified enzyme had high homology with leucine dehydrogenase.


Subject(s)
Bacterial Proteins , Chemistry , Metabolism , Biocatalysis , Chromatography, High Pressure Liquid , Electrophoresis, Polyacrylamide Gel , Enzyme Stability , Hydrogen-Ion Concentration , Kinetics , Leucine Dehydrogenase , Metabolism , Metals, Heavy , Pharmacology , Molecular Weight , Morganella morganii , Metabolism , Oxidoreductases , Chemistry , Metabolism , Pseudoephedrine , Chemistry , Metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Stereoisomerism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL