Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters








Year range
1.
Bol. latinoam. Caribe plantas med. aromát ; 10(6): 500-506, ene. 2011. ilus
Article in Spanish | LILACS | ID: lil-618846

ABSTRACT

Wind-up is a measure of nociceptive neurons synaptic potentiation and constitutes an important mechanism in the generation of central sensitization in chronic pain. At the spinal level, the C-evoked reflex in the bicep femoris muscle, by low frequency repetitive stimulation of the sural nerve, has enabled us to evaluate the wind-up of nociceptive neurons of the dorsal horn, and also the effect of antinociceptive drugs with a possible potential therapeutic value in chronic pain. In the present work, we electrophysiologically evaluated the trigeminal wind-up activity, utilizing as an experimental paradigm the evoked C-reflex in the Sprague-Dawley rat digastric muscle. The results obtained indicate that: (a) It is possible to evoke an electromyographic reflex in the digastric muscle by stimulation of C-fibers belonging to the third trigeminal branch; (b) It is possible to potentiate the trigeminal C-reflex with low frequency stimuli (wind-up) and (c) it is possible to depress the trigeminal wind-up with the μ-opioid agonist morphine and with the NMDA receptor antagonist, ketamine. We can conclude that the simple measurement of the trigeminal wind-up will facilitate future studies on the analgesic efficacy of new drugs in oro-facial chronic pain syndromes like migraine and with special emphasis on medicinal plant active principles.


El wind-up refleja la potenciación sináptica en neuronas nociceptivas y constituye un importante mecanismo en la generación de sensibilización central en dolor crónico. A nivel espinal, el reflejo C evocado en el músculo bicep femoris por estimulación repetitiva de baja frecuencia del nervio sural ha permitido evaluar la actividad wind-up en neuronas nociceptivas del cuerno dorsal, así como el efecto de drogas antinociceptivas con un posible potencial terapéutico en dolor crónico. En el presente trabajo evaluamos electrofisiológicamente la actividad wind-up trigeminal, utilizando como paradigma experimental el reflejo C evocado en el músculo digástrico de ratas Sprague-Dawley. Los resultados obtenidos indican que: (a) es posible evocar un reflejo electromiográfico en el músculo digástrico de la rata por estimulación de fibras C de la tercera rama del trigémino; (b) es posible potenciar el reflejo C trigeminal con estímulos de baja frecuencia (wind-up) y (c) es posible deprimir el wind-up trigeminal con el agonista μ-opioide morfina y con el antagonista NMDA, ketamina. Podemos concluir que la medición simple del wind-up trigeminal mediante el reflejo C evocado en el músculo digástrico facilitará futuros estudios sobre eficacia analgésica de nuevos fármacos en cuadros de dolor orofacial crónicos, como la migraña, con especial énfasis en los principios activos de plantas medicinales.


Subject(s)
Animals , Rats , Electrophysiology , Facial Pain , Masticatory Muscles/physiopathology , Neck Muscles/physiopathology , Reflex , Electric Stimulation , Evoked Potentials , Masticatory Muscles/innervation , Neck Muscles/innervation , Nerve Fibers, Unmyelinated , Trigeminal Nerve/physiopathology , Plants, Medicinal , Rats, Sprague-Dawley
2.
Int. j. morphol ; 27(3): 627-634, sept. 2009. ilus
Article in English | LILACS | ID: lil-598915

ABSTRACT

The progress of science in search of new techniques of the nerve regeneration and the functional repair in reinnervated muscle has been the target of many researchers around the world. Consequently, nerves and muscles in different body segments asked for more enlightenment of their morphology, their interrelation with other anatomic structures and their peculiarities. One of the most significant areas that need deeper studies is the region of the head and neck, since they are often affected by important pathologies. In order to offer the researcher's community a morphological myoneural interaction model, this study elected the levator labii superioris muscle and its motor nerve, the buccal branch of the facial nerve (VII pair) not only for its special characteristics, but also its value on the facial expression. The rat was chosen for this investigation for being easy to obtain, to keep, to manipulate and to compare this experiment with many others studies previously published. The techniques used were Mesoscopic (dissection), histoenzymologic and morphometric ones.In the results the muscle proved to have a predominance of fast twich fibers (FG and FOG) and superficial location, with a proximal bone and a distal cutaneous insertion. Its motor nerve, the buccal branch of the facial nerve (VII pair), breaks through the muscle belly into its deep face, and comprised a heterogeneous group of myelinic nerve fibers disposed in a regular form in all fascicle. Near the motor point, the nerve showed to be composed of two fascicles with different sizes. Due to the small nerve dimensions, the nerve fibers have a smaller diameter if compared to the motor nerve of pectineus muscle of the cat. Further studies with neural tracers have already had a start in order to provide more information about the distribution and the architecture of these fibers.


El progreso de la ciencia en busca de nuevas técnicas para la regeneración neural y la recuperación funcional de los músculos reinervados, ha atraído el interés de muchos investigadores en todo el mundo. En consecuencia, los músculos y los nervios merecen más aclaraciones sobre su morfología, relaciones anatómicas y particularidades. Entre las áreas que merecen estudios más profundos y detallados, está la región de cabeza y cuello, que es a menudo afectada por enfermedades graves. Con el propósito de ofrecer a la comunidad científica un modelo morfológico de interacción mioneural, se eligió el músculo elevador del labio superior y su nervio motor, la rama bucal del nervio facial (VII par craneal), por sus especiales características y su importancia en la expresión facial. En esta investigación se optó por la rata, por las facilidades de obtención, de manejo y para comparar los datos obtenidos con estudios previos. Se utilizaron técnicas mesoscópicas de disección, histoenzimológicas y morfométricas. Los resultados mostraron un músculo con predominio de fibras de contracción rápida (FG y FOG), ubicación superficial, inserción proximal ósea e inserción distal en la piel. Su nervio motor, la rama bucal del nervio facial, ingresa en el vientre muscular en la cara profunda, y está compuesto por un grupo heterogéneo de fibras nerviosas mielínicas dispuestas de forma regular por todo el fascículo nervioso cerca del punto motor. El nervio es formado por dos fascículos de diferentes tamaños. Debido a las pequeñas dimensiones en la rata, el diámetro de las fibras nerviosas presenta valores reducidos, en comparación con el nervio motor del músculo pectíneo en el gato, por ejemplo. Los datos aportados podrán ser usados como referencia en estudios de regeneración en nervios y músculos. Otros estudios con marcadores neuronales se iniciaron para aclarar la distribución y la estructura de las fibras mencionadas.


Subject(s)
Animals , Infant , Rats , Lip/anatomy & histology , Lip/innervation , Masticatory Muscles/innervation , Neuromuscular Junction/anatomy & histology , Anatomy, Veterinary , Rats, Wistar/anatomy & histology
3.
Article in English | IMSEAR | ID: sea-51492

ABSTRACT

This review summerizes recent approaches to the physiology of the masticatory system in humans that aim to understand how the process is influenced by the material properties of foods. The centerpiece is a group of experiments that show that the rate of breakdown of food in human mastification depends principally on the combination of two mechanical properties of foods: toughness(R) and modulus of elasticity (E). Two mechanical indices are constructed from these properties: the square root of their product, (ER)0.5, is predicted to explain the resistance to an incisal bite, while the square root of their ratio, (R/E)0.5 is predicted to control the rate of fragmentation during a postcanie bite. Evidence for the latter is reviewed, which also appears to modulate the activity of jaw closing muscles and the extent of lateral mandibular movement during mastication. These studies provide a quantified link between the food stimulus and the physiological response of the mastiatory system for which we know of no parallel. Attempts to extend this analysis have been made by psychophysical investigations of food texture. These support some sensitivity to the mechanical index that we have identified, but are not conclusive. Finally, we provide a chart summarizing physiological responses to food texture that could interest dentists, food scientists and also those interested in the analysis of dentition and diet in mammals.


Subject(s)
Biomechanical Phenomena , Bite Force , Dental Stress Analysis , Elasticity , Feedback , Food , Hardness , Humans , Jaw/innervation , Mastication/physiology , Masticatory Muscles/innervation
SELECTION OF CITATIONS
SEARCH DETAIL