Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters








Language
Year range
1.
Mem. Inst. Oswaldo Cruz ; 114: e180593, 2019. graf
Article in English | LILACS | ID: biblio-1020079

ABSTRACT

BACKGROUND Cardiac physiology depends on coupling and electrical and mechanical coordination through the intercalated disc. Focal adhesions offer mechanical support and signal transduction events during heart contraction-relaxation processes. Talin links integrins to the actin cytoskeleton and serves as a scaffold for the recruitment of other proteins, such as paxillin in focal adhesion formation and regulation. Chagasic cardiomyopathy is caused by infection by Trypanosoma cruzi and is a debilitating condition comprising extensive fibrosis, inflammation, cardiac hypertrophy and electrical alterations that culminate in heart failure. OBJECTIVES Since mechanotransduction coordinates heart function, we evaluated the underlying mechanism implicated in the mechanical changes, focusing especially in mechanosensitive proteins and related signalling pathways during infection of cardiac cells by T. cruzi. METHODS We investigated the effect of T. cruzi infection on the expression and distribution of talin/paxillin and associated proteins in mouse cardiomyocytes in vitro by western blotting, immunofluorescence and quantitative real-time polymerase chain reaction (qRT-PCR). FINDINGS Talin and paxillin spatial distribution in T. cruzi-infected cardiomyocytes in vitro were altered associated with a downregulation of these proteins and mRNAs levels at 72 h post-infection (hpi). Additionally, we observed an increase in the activation of the focal adhesion kinase (FAK) concomitant with increase in β-1-integrin at 24 hpi. Finally, we detected a decrease in the activation of FAK at 72 hpi in T. cruzi-infected cultures. MAIN CONCLUSION The results suggest that these changes may contribute to the mechanotransduction disturbance evidenced in chagasic cardiomyopathy.


Subject(s)
Animals , Mice , Trypanosoma cruzi/physiology , Chagas Cardiomyopathy/metabolism , Myocytes, Cardiac/parasitology , Mechanotransduction, Cellular/genetics , Blotting, Western , Polymerase Chain Reaction , Fluorescent Antibody Technique , Paxillin/metabolism
2.
Int. arch. otorhinolaryngol. (Impr.) ; 19(1): 93-95, Jan-Mar/2015. graf
Article in English | LILACS | ID: lil-741535

ABSTRACT

Introduction Schwannoma of the olfactory groove is an extremely rare tumor that can share a differential diagnosis with meningioma or neuroblastoma. Objectives The authors present a case of giant schwannoma involving the anterior cranial fossa and ethmoid sinuses. Case Report The patient presented with a 30-month history of left nasal obstruction, anosmia, and sporadic ipsilateral bleeding. Computed tomography of the paranasal sinuses revealed expansive lesion on the left nasal cavity extending to nasopharynx up to ethmoid and sphenoid sinuses bilaterally with intraorbital and parasellar extension to the skull base. Magnetic resonance imaging scan confirmed the expansive tumor without dural penetration. Biopsy revealed no evidence of malignancy and probable neural cell. Bifrontal craniotomy was performed combined with lateral rhinotomy (Weber-Ferguson approach), and the lesion was totally removed. The tumor measured 8.0 4.3 3.7 cm and microscopically appeared as a schwannoma composed of interwoven bundles of elongated cells (Antoni A regions)mixed with less cellular regions (Antoni B). Immunohistochemical study stained intensively for vimentin and S-100. Conclusion Schwannomas of the olfactory groove are extremely rare, and the findings of origin of this tumor is still uncertain but recent studies point most probably to the meningeal branches of trigeminal nerve or anterior ethmoidal nerves. .


Subject(s)
Animals , Female , Male , Mice , Cell Membrane Permeability/physiology , Hair Cells, Auditory/physiology , Ion Channels/physiology , Mechanotransduction, Cellular/physiology , Animals, Newborn , Cadherins/genetics , Cell Membrane Permeability/genetics , Chelating Agents/pharmacology , Dihydrostreptomycin Sulfate/pharmacology , Embryo, Mammalian , Egtazic Acid/analogs & derivatives , Egtazic Acid/pharmacology , Hair Cells, Auditory/cytology , Hair Cells, Auditory/drug effects , In Vitro Techniques , Ion Channels/drug effects , Mice, Transgenic , Mechanotransduction, Cellular/drug effects , Mechanotransduction, Cellular/genetics , Membrane Potentials/drug effects , Membrane Potentials/genetics , Myosins/genetics , Organ of Corti/cytology , Protein Precursors/genetics
3.
New York; Springer; 2008. 381 p.
Monography in English | LILACS, ColecionaSUS | ID: biblio-941593
5.
San Diego; Academic Press; 2007. 413 p.
Monography in English | LILACS, ColecionaSUS | ID: biblio-941591
SELECTION OF CITATIONS
SEARCH DETAIL