Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Rev. Soc. Bras. Med. Trop ; 49(2): 196-203, Mar.-Apr. 2016. tab, graf
Article in English | LILACS | ID: lil-782098

ABSTRACT

Abstract: INTRODUCTION: Leishmaniasis is a disease caused by the protozoan Leishmania that resides mainly in mononuclear phagocytic system tissues. Pentavalent antimonials are the main treatment option, although these drugs have toxic side effects and high resistance rates. A potentially alternative and more effective therapeutic strategy is to use liposomes as carriers of the antileishmanial agents. The aims of this study were to develop antimonial drugs entrapped into phosphatidylserine liposomes and to analyze their biological and physicochemical characteristics. METHODS: Liposomes containing meglumine antimoniate (MA) or pentavalent antimony salt (Sb) were obtained through filter extrusion (FEL) and characterized by transmission electron microscopy. Promastigotes of Leishmania infantum were incubated with the drugs and the viability was determined with a tetrazolium dye (MTT assay). The effects of these drugs against intracellular amastigotes were also evaluated by optical microscopy, and mammalian cytotoxicity was determined by an MTT assay. RESULTS: Liposomes had an average diameter of 162nm. MA-FEL showed inhibitory activity against intracellular L. infantum amastigotes, with a 50% inhibitory concentration (IC50) of 0.9μg/mL, whereas that of MA was 60μg/mL. Sb-FEL showed an IC50 value of 0.2μg/mL, whereas that of free Sb was 9μg/mL. MA-FEL and Sb-FEL had strong in vitro activity that was 63-fold and 39-fold more effective than their respective free drugs. MA-FEL tested at a ten-times higher concentration than Sb-FEL did not show cytotoxicity to mammalian cells, resulting in a higher selectivity index. CONCLUSIONS: Antimonial drug-containing liposomes are more effective against Leishmania-infected macrophages than the non-liposomal drugs.


Subject(s)
Animals , Organometallic Compounds/pharmacology , Phosphatidylserines/pharmacology , Macrophages, Peritoneal/parasitology , Leishmania infantum/drug effects , Antimony Sodium Gluconate/pharmacology , Meglumine/pharmacology , Antiprotozoal Agents/pharmacology , Organometallic Compounds/chemistry , Phosphatidylserines/chemistry , Cricetinae , Antimony Sodium Gluconate/chemistry , Inhibitory Concentration 50 , Parasitic Sensitivity Tests , Dose-Response Relationship, Drug , Meglumine Antimoniate , Liposomes , Meglumine/chemistry , Mice , Mice, Inbred BALB C , Antiprotozoal Agents/chemistry
2.
Mem. Inst. Oswaldo Cruz ; 103(2): 130-137, Mar. 2008. graf, tab
Article in English | LILACS | ID: lil-480643

ABSTRACT

The pentavalent antimonies, mainly the meglumine antimoniate, are recommends as first-choice medicines for leishmaniasis therapy. In this work we described the development of formulations of meglumine antimoniate injectable medication, as well as the analytical methodology used in the selective determination of Sb(III) and Sb(Total) by hydride generation - inductively coupled plasma atomic emission spectrometry (HG-ICP-AES) and ICP-AES, respectively. On that purpose the analytical methodology was developed focusing on the HG-ICP-AES technique. The formulations using propylene glycol/water as vehicles in a 20:80 proportion were more appropriate for subsequent use in industrial scale. These formulations also showed a lower variation on Sb(III) percentage, no need of buffer solution to stabilize the formulation and no influence of the autoclaving in the quality of the product. The results of the development of the analytical methodology point out the proposed method as an efficient alternative for the determination of Sb(III) in the presence of large quantities of Sb(V) in injectable solutions of meglumine antimoniate, in a selective, linear, accurate and precise manner. In addition, the method showed a low limit of quantification, less interference of the matrix, and more resilience than batch techniques proposed in the Brazilian Pharmacopeia.


Subject(s)
Antimony/analysis , Antiprotozoal Agents/chemistry , Flow Injection Analysis/methods , Meglumine/chemistry , Organometallic Compounds/chemistry , Spectrophotometry, Atomic/methods , Antiprotozoal Agents/standards , Chemistry, Pharmaceutical/standards , Meglumine/standards , Organometallic Compounds/standards , Quality Control
3.
Braz. j. med. biol. res ; 33(7): 841-6, July 2000. tab
Article in English | LILACS | ID: lil-262685

ABSTRACT

The antimonial drug, meglumine antimoniate, was successfully encapsulated in dehydration-rehydration vesicles and in freeze-dried empty liposomes (FDELs). High encapsulation efficiencies (from 28 to 58 percent) and low weight ratios of lipids to encapsulated antimony (from 1:0.15 to 1:0.3) were achieved. These formulations, contrary to those obtained by conventional methods, can be stored as intermediate lyophilized forms and reconstituted just before use. The efficacy of FDEL-encapsulated meglumine antimoniate was evaluated in hamsters experimentally infected with Leishmania chagasi. A significant reduction of liver parasite burdens was observed in animals treated with this preparation, when compared to control animals treated with empty liposomes. In contrast, free meglumine antimoniate was found to be inefficient when administered at a comparable dose of antimony. This novel liposome-based meglumine antimoniate formulation appears to be promising as a pharmaceutical product for the treatment of visceral leishmaniasis.


Subject(s)
Animals , Cricetinae , Antiprotozoal Agents/chemistry , Drug Compounding/methods , Leishmania donovani , Leishmaniasis, Visceral/drug therapy , Liposomes/chemistry , Meglumine/chemistry , Analysis of Variance , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Dehydration , Leishmania donovani/drug effects , Meglumine/pharmacology , Meglumine/therapeutic use
4.
Rev. Soc. Bras. Med. Trop ; 29(5): 461-5, Sept.-Oct. 1996. ilus
Article in Portuguese | LILACS | ID: lil-187190

ABSTRACT

During the period October 1992 to July 1995 we measured the osmolarity and pH of ampoules of meglumine antimoniate (glucantime) from lot 9206L-004 (manufactured by Rhodia Farma Ltd, of Säo Paulo, SP, Brazil) maintained in three temperature conditions namely 4 degrees C, 37 degrees C and ambiental. Although we observed statistically significant differences in osmolarity between samples, the limited number of measurements and the variation of this property in ampoules maintained at the same temperature were obstacles to obtain definitive conclusions. Such a variation was not found with pH. Assuming these parameters could reflect structural changes in the pentavalent antimony molecule, clearly further better controlled experiments are indicated.


Subject(s)
Antiprotozoal Agents/chemistry , Organometallic Compounds/chemistry , Meglumine/chemistry , Drug Storage , Hydrogen-Ion Concentration , Osmolar Concentration
SELECTION OF CITATIONS
SEARCH DETAIL