Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 41(6): 485-493, Nov.-Dec. 2019. tab, graf
Article in English | LILACS | ID: biblio-1055347

ABSTRACT

Objective: Cocaine use disorders (CUDs) represent a major public health problem in many countries. To better understand the interaction between the environmental modulations and phenotype, the aim of the present study was to investigate the DNA methylation pattern of CUD patients, who had concomitant cocaine and crack dependence, and healthy controls. Methods: We studied DNA methylation profiles in the peripheral blood of 23 CUD patients and 24 healthy control subjects using the Illumina Infinium HumanMethylation450 BeadChip arrays. Results: Comparison between CUD patients and controls revealed 186 differentially methylated positions (DMPs; adjusted p-value [adjP] < 10-5) related to 152 genes, with a subset of CpGs confirmed by pyrosequencing. DNA methylation patterns discriminated CUD patients and control groups. A gene network approach showed that the EHMT1, EHMT2, MAPK1, MAPK3, MAP2K1, and HDAC5 genes, which are involved in transcription and chromatin regulation cellular signaling pathways, were also associated with cocaine dependence. Conclusion: The investigation of DNA methylation patterns may contribute to a better understanding of the biological mechanisms involved in CUD.


Subject(s)
Humans , Male , Adult , Young Adult , Crack Cocaine , DNA Methylation , Cocaine-Related Disorders/genetics , Cocaine-Related Disorders/blood , Genome-Wide Association Study/methods , Case-Control Studies , Linear Models , Histone-Lysine N-Methyltransferase/genetics , Statistics, Nonparametric , Mitogen-Activated Protein Kinase 1/genetics , MAP Kinase Kinase 1/genetics , Mitogen-Activated Protein Kinase 3/genetics , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing , Histocompatibility Antigens/genetics , Histone Deacetylases/genetics
2.
Braz. j. med. biol. res ; 49(3): e4861, Mar. 2016. tab, graf
Article in English | LILACS | ID: lil-771938

ABSTRACT

The present study screened potential genes related to lung adenocarcinoma, with the aim of further understanding disease pathogenesis. The GSE2514 dataset including 20 lung adenocarcinoma and 19 adjacent normal tissue samples from 10 patients with lung adenocarcinoma aged 45-73 years was downloaded from Gene Expression Omnibus. Differentially expressed genes (DEGs) between the two groups were screened using the t-test. Potential gene functions were predicted using functional and pathway enrichment analysis, and protein-protein interaction (PPI) networks obtained from the STRING database were constructed with Cytoscape. Module analysis of PPI networks was performed through MCODE in Cytoscape. In total, 535 upregulated and 465 downregulated DEGs were identified. These included ATP5D, UQCRC2, UQCR11 and genes encoding nicotinamide adenine dinucleotide (NADH), which are mainly associated with mitochondrial ATP synthesis coupled electron transport, and which were enriched in the oxidative phosphorylation pathway. Other DEGs were associated with DNA replication (PRIM1, MCM3, and RNASEH2A), cell surface receptor-linked signal transduction and the enzyme-linked receptor protein signaling pathway (MAPK1, STAT3, RAF1, and JAK1), and regulation of the cytoskeleton and phosphatidylinositol signaling system (PIP5K1B, PIP5K1C, and PIP4K2B). Our findings suggest that DEGs encoding subunits of NADH, PRIM1, MCM3, MAPK1, STAT3, RAF1, and JAK1 might be associated with the development of lung adenocarcinoma.


Subject(s)
Humans , Male , Female , Middle Aged , Aged , Adenocarcinoma/genetics , Gene Expression Profiling/methods , Lung Neoplasms/genetics , Microfilament Proteins/genetics , Down-Regulation/genetics , Gene Regulatory Networks , Mitogen-Activated Protein Kinase 1/genetics , NAD/genetics , Protein Interaction Maps/genetics , Proto-Oncogene Proteins c-raf/genetics , Up-Regulation/genetics
3.
Clinics ; 70(3): 157-161, 03/2015. tab
Article in English | LILACS | ID: lil-747105

ABSTRACT

OBJECTIVE: To determine whether Tai Chi Chuan or ballroom dancing promotes better performance with respect to postural balance, gait, and postural transfer among elderly people. METHODS: We evaluated 76 elderly individuals who were divided into two groups: the Tai Chi Chuan Group and the Dance Group. The subjects were tested using the NeuroCom Balance Master¯ force platform system with the following protocols: static balance tests (the Modified Clinical Tests of Sensory Interaction on Balance and Unilateral Stance) and dynamic balance tests (the Walk Across Test and Sit-to-stand Transfer Test). RESULTS: In the Modified Clinical Test of Sensory Interaction on Balance, the Tai Chi Chuan Group presented a lower sway velocity on a firm surface with open and closed eyes, as well as on a foam surface with closed eyes. In the Modified Clinical Test of Sensory Interaction on Unilateral Stance, the Tai Chi Chuan Group presented a lower sway velocity with open eyes, whereas the Dance Group presented a lower sway velocity with closed eyes. In the Walk Across Test, the Tai Chi Chuan Group presented faster walking speeds than those of the Dance Group. In the Sit-to-stand Transfer Test, the Tai Chi Chuan Group presented shorter transfer times from the sitting to the standing position, with less sway in the final standing position. CONCLUSION: The elderly individuals who practiced Tai Chi Chuan had better bilateral balance with eyes open on both types of surfaces compared with the Dance Group. The Dance Group had better unilateral postural balance with eyes closed. The Tai Chi Chuan Group had faster walking speeds, shorter transfer times, and better postural balance in the final standing position during the Sit-to-stand Test. .


Subject(s)
/metabolism , Cyclic AMP/metabolism , Dictyostelium/enzymology , Dictyostelium/genetics , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Protozoan Proteins/metabolism , /genetics , Dictyostelium/growth & development , Dictyostelium/metabolism , Down-Regulation/drug effects , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Folic Acid/pharmacology , /deficiency , /genetics , /metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/deficiency , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , Mutation , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Protozoan Proteins/genetics , Signal Transduction , Spores, Protozoan/enzymology , Spores, Protozoan/genetics , Vitamin B Complex/pharmacology
4.
Braz. j. med. biol. res ; 44(12): 1231-1242, Dec. 2011. ilus, tab
Article in English | LILACS | ID: lil-606547

ABSTRACT

The mitogenic effects of periodic mechanical stress on chondrocytes have been studied extensively but the mechanisms whereby chondrocytes sense and respond to periodic mechanical stress remain a matter of debate. We explored the signal transduction pathways of chondrocyte proliferation and matrix synthesis under periodic mechanical stress. In particular, we sought to identify the role of the MEK1/2-ERK1/2 signaling pathway in chondrocyte proliferation and matrix synthesis following cyclic physiologic mechanical compression. Under periodic mechanical stress, both rat chondrocyte proliferation and matrix synthesis were significantly increased (P < 0.05) and were associated with increases in the phosphorylation of Src, PLCγ1, MEK1/2, and ERK1/2 (P < 0.05). Pretreatment with the MEK1/2-ERK1/2 selective inhibitor, PD98059, and shRNA targeted to ERK1/2 reduced periodic mechanical stress-induced chondrocyte proliferation and matrix synthesis (P < 0.05), while the phosphorylation levels of Src-Tyr418 and PLCγ1-Tyr783 were not inhibited. Proliferation, matrix synthesis and phosphorylation of MEK1/2-Ser217/221 and ERK1/2-Thr202/Tyr204 were inhibited after pretreatment with the PLCγ1 inhibitor U73122 in chondrocytes in response to periodic mechanical stress (P < 0.05), while the phosphorylation site of Src-Tyr418 was not affected. Inhibition of Src activity with PP2 and shRNA targeted to Src abrogated chondrocyte proliferation and matrix synthesis (P < 0.05) and attenuated PLCγ1, MEK1/2 and ERK1/2 activation in chondrocytes subjected to periodic mechanical stress (P < 0.05). These findings suggest that periodic mechanical stress promotes chondrocyte proliferation and matrix synthesis in part through the Src-PLCγ1-MEK1/2-ERK1/2 signaling pathway, which links these three important signaling molecules into a mitogenic cascade.


Subject(s)
Animals , Rats , Chondrocytes/cytology , Chondrocytes/enzymology , MAP Kinase Signaling System/physiology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Stress, Mechanical , MAP Kinase Signaling System/genetics , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogens/metabolism , Phospholipase C gamma/metabolism , Rats, Sprague-Dawley , src-Family Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL