Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Biol. Res ; 45(1): 75-80, 2012. ilus, tab
Article in English | LILACS | ID: lil-626750

ABSTRACT

The mechanisms of exercise-induced fatigue have not been investigated using proteomic techniques, an approach that could improve our understanding and generate novel information regarding the effects of exercise. In this study, the proteom alterations of rat skeletal muscle were investigated during exercise-induced fatigue. The proteins were extracted from the skeletal muscle of SD rat thigh, and then analyzed by two-dimensional electrophoresis and PDQuest software. Compared to control samples, 10 significantly altered proteins were found in exercise samples, two of them were upregulated and eight of them were downregulated. These proteins were identified by MALDI TOF-MS. The two upregulated proteins were identified as MLC1 and myosin L2 (DTNB) regulatory light-chain precursors. The eight decreased proteins are Glyceraldehyde-3-phosphate Dehydrogenas (GAPDH); Beta enolase; Creatine kinase M chain (M-CK); ATP-AMP Transphosphorylase (AK1); myosin heavy chain (MHC); actin; Troponin I, fast-skeletal muscle (Troponin I fast-twitch isoform), fsTnI; Troponin T, fast-skeletal muscle isoforms (TnTF). In these proteins, four of the eight decreased proteins are related directly or indirectly to exercise induced fatigue. The other proteins represent diverse sets of proteins including enzymyes related to energy metabolism, skeletal muscle fabric protein and protein with unknown functions. They did not exhibit evident relationship with exercise-induced fatigue. Whereas the two identified increased proteins exhibit evident relationship with fatigue. These findings will help in understanding the mechanisms involved in exercise-induced fatigue.


Subject(s)
Animals , Male , Rats , Muscle Fatigue/physiology , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Physical Exertion/physiology , Body Weight/physiology , Electrophoresis, Gel, Two-Dimensional , Energy Metabolism/physiology , Mass Spectrometry , Models, Animal , Muscle Proteins/chemistry , Proteomics , Random Allocation , Rats, Sprague-Dawley , Swimming/physiology , Troponin I/chemistry , Troponin I/metabolism , Troponin T/chemistry , Troponin T/metabolism
2.
Arq. bras. cardiol ; 96(4): 332-339, abr. 2011. ilus, tab
Article in Portuguese | LILACS | ID: lil-585905

ABSTRACT

A titina é uma proteína sarcomérica gigante que se estende desde a linha Z até a linha M. Em razão de sua localização, representa um importante sensor biomecânico com um papel fundamental na manutenção da integridade estrutural do sarcômero. A titina funciona como uma "mola bidirecional" que regula o comprimento sarcomérico e realiza ajustes adequados da tensão passiva sempre que o comprimento varia. Dessa forma, não só determina a rigidez ventricular e a função diastólica, como também influencia a função cardíaca sistólica, modulando o mecanismo de Frank-Starling. O miocárdio expressa duas isoformas dessa macromolécula: a N2B, mais rígida, e a isoforma N2BA, mais complacente. As alterações na expressão relativa das duas isoformas da titina ou alterações do seu estado de fosforilação têm sido implicadas na fisiopatologia de várias doenças como a insuficiência cardíaca diastólica, a cardiomiopatia dilatada, a cardiomiopatia isquêmica e a estenose aórtica. Neste artigo pretende-se descrever sumariamente a estrutura e localização da titina, a sua relação com diferentes cardiomiopatias, e compreender de que forma as alterações dessa macromolécula influenciam a fisiopatologia da insuficiência cardíaca diastólica, salientando o potencial terapêutico da manipulação dessa macromolécula.


Titin is a giant sarcomeric protein that extends from the Z-line to the M-line. Due to its location, it represents an important biomechanical sensor, which has a crucial role in the maintenance of the sarcomere structural integrity. Titin works as a "bidireactional spring" that regulates the sarcomeric length and performs adequate adjustments of passive tension whenever the length varies. Therefore, it determines not only ventricular rigidity and diastolic function, but also systolic cardiac function, modulating the Frank-Starling mechanism. The myocardium expresses two isoforms of this macromolecule: the N2B, more rigid and the isoform N2BA, more compliant. The alterations in the relative expression of the two titin isoforms or alterations in their state of phosphorylation have been implicated in the pathophysiology of several diseases, such as diastolic heart failure, dilated cardiomyopathy, ischemic cardiomyopathy and aortic stenosis. The aim of this study is to describe, in brief, the structure and location of titin, its association with different cardiomyopathies and understand how alterations in this macromolecule influence the pathophysiology of diastolic heart failure, emphasizing the therapeutic potential of the manipulation of this macromolecule.


La titina es una proteína sarcomérica gigante que se extiende desde la línea Z hasta la línea M. En razón de su ubicación, representa un importante sensor biomecánico con un papel fundamental en la manutención de la integridad estructural del sarcómero. La titina funciona como un "resorte bidireccional" que regula el largo sarcomérico y realiza ajustes adecuados de la tensión pasiva siempre que ese largo varía. De esa forma, no sólo determina la rigidez ventricular y la función diastólica, sino también influye en la función cardíaca sistólica, modulando el mecanismo de Frank-Starling. El miocardio expresa dos isoformas de esa macromolécula: la N2B, más rígida, y la isoforma N2BA, más complaciente. Las alteraciones en la expresión relativa de las dos isoformas de la titina o alteraciones de su estado de fosforilación han sido implicadas en la fisiopatología de varias enfermedades como la insuficiencia cardíaca diastólica, la cardiomiopatía dilatada, la cardiomiopatía isquémica y la estenosis aórtica. Este artículo pretende describir sumariamente la estructura y ubicación de la titina, su relación con diferentes cardiomiopatías, y comprender de qué forma las alteraciones de esa macromolécula influyen en la fisiopatología de la insuficiencia cardíaca diastólica, destacando el potencial terapéutico de la manipulación de esa macromolécula.


Subject(s)
Humans , Heart Failure/physiopathology , Muscle Proteins/physiology , Protein Kinases/physiology , Sarcomeres/chemistry , Cardiomyopathies/physiopathology , Muscle Proteins/chemistry , Myocardium/chemistry , Protein Isoforms/chemistry , Protein Isoforms/physiology , Protein Kinases/chemistry
3.
Yonsei Medical Journal ; : 927-930, 2004.
Article in English | WPRIM | ID: wpr-203758

ABSTRACT

Recent genetic and immunohistochemical analyses have shown that Miyoshi myopathy (MM) is caused by a mutation in the DYSF gene, which induces dysfunction of dysferlin. The author described one patient showing characteristic MM phenotype with deficiency of dysferlin on immunohistochemistry. Direct DNA sequencing of whole exons of DYSF gene revealed one homozygous missense mutation (G1165C) on exon 12, which let to an amino acid substitution from the glutamic acid to glutamine at the 389 of the peptide sequence in this patient. This is the first reported case of MM confirmed by immunohistochemical and genetic analyses in Korea.


Subject(s)
Adult , Humans , Male , Caveolins/analysis , Distal Myopathies/genetics , Immunohistochemistry , Membrane Proteins/chemistry , Muscle Proteins/chemistry , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL