Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 54(5): e9665, 2021. graf
Article in English | LILACS | ID: biblio-1153550

ABSTRACT

This study aimed to explore the effect of microRNA (miR)-146a inhibition on regulating cell apoptosis, total neurite outgrowth, inflammation, and STAT1/MYC pathway in Alzheimer's disease (AD). PC12 and cortical neuron cellular AD models were constructed by Aβ1-42 insult. For the former model, nerve growth factor (NGF) stimulation was previously conducted. miR-146a inhibitor and negative-control (NC) inhibitor were transfected into the two cellular AD models, and then cells were named miR-inhibitor group and NC-inhibitor group, respectively. After transfection, cell apoptosis, total neurite outgrowth, supernatant inflammation cytokines, and STAT1/MYC pathway were detected. miR-146a expression was similar between PC12 cellular AD model and control cells (NGF-stimulated PC12 cells), while miR-146a expression was increased in cortical neuron cellular AD model compared with control cells (rat embryo primary cortical neurons). In both PC12 and cortical neuron cellular AD models, miR-146a expression was reduced in miR-inhibitor group compared with NC-inhibitor group after transfection. Furthermore, cell apoptosis was attenuated, while total neurite outgrowth was elevated in miR-inhibitor group compared with NC-inhibitor group. As for supernatant inflammatory cytokines, tumor necrosis factor-α, interleukin (IL)-1β, IL-6, and IL-17 levels were lower in miR-inhibitor group than in NC-inhibitor group. Additionally, STAT1 and c-Myc mRNA and protein expressions were attenuated in miR-inhibitor group compared with NC-inhibitor group. In conclusion, miR-146a potentially represented a viable therapeutic target for AD.


Subject(s)
Animals , Rats , MicroRNAs/genetics , Alzheimer Disease/genetics , PC12 Cells , Apoptosis , STAT1 Transcription Factor , Neuronal Outgrowth , Inflammation , Neurons
2.
Chinese Journal of Traumatology ; (6): 16-24, 2016.
Article in English | WPRIM | ID: wpr-235792

ABSTRACT

<p><b>PURPOSE</b>To investigate the in vitro effect of short interfering RNAs (siRNAs) against Nogo receptor (NgR) on neurite outgrowth under an inhibitory substrate of central nervous system (CNS) myelin.</p><p><b>METHODS</b>Three siRNA sequences against NgR were designed and transfected into cerebellar granule cells (CGCs) to screen for the most effcient sequence of NgR siRNA by using reverse transcription polymerase chain reaction (RT-PCR) and immunofluorescence staining. NgR siRNA sequence 1 was found the most efficient which was then transfected into the CGCs grown on CNS myelin substrate to observe its disinhibition for neurite outgrowth.</p><p><b>RESULTS</b>Compared with the scrambled control sequence of siRNA, the NgR siRNA sequence 1 significantly decreased NgR mRNA level at 24 h and 48 h (p <0.05), which was recovered by 96 h after transfection. NgR immunoreactivity was also markedly reduced at 24 and 48 h after the transfection of siRNA sequence 1 compared with that before transfection (p<0.05). The NgR immunoreactivity was recovered after 72 h post-transfection. Moreover, the neurite outgrowth on the myelin substrate was greatly improved within 72 h after the transfection with siRNA sequence 1 compared with the scrambled sequence-transfected group or non-transfected group (p<0.05).</p><p><b>CONCLUSION</b>siRNA-mediated knockdown of NgR expression contributes to neurite outgrowth in vitro.</p>


Subject(s)
Animals , Rats , Cells, Cultured , Myelin Sheath , Physiology , Neuronal Outgrowth , Physiology , Nogo Receptor 1 , Genetics , Physiology , RNA, Small Interfering , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL