Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Language
Year range
1.
Braz. j. biol ; 76(4): 990-993, Oct.-Dec. 2016. tab
Article in English | LILACS | ID: biblio-828109

ABSTRACT

Abstract The use of biological agents has been intensified in recent years against eggs and larvae of gastrointestinal nematodes as an alternative control method in pasture plant health management, with the concomitant use with antiparasitic drugs still occurring. The aim of this study was to test the in vitro activity of the following antiparasitic drugs: Ivermectin and albendazole against the following nematophagous fungi: Paecilomyces fumosoroseus, Paecilomyces lilacinus and Paecilomyces variotii. The agar diffusion test was performed using an initial concentration of 0.0016g/mL of each drug, after solidification of the culture medium containing the drug concentration each nematophagous fungi was inoculated. The results showed that in a concentration of 80μg/mL, the fungal growth decreased, however, with the concentration of 160μg/mL, there was no fungal growth in both drugs, compared to the control, which indicates an inhibition in the development of the nematophagous fungi studied when they come in contact with ivermectin and albendazole.


Resumo O uso de agentes biológicos que atuam em ovos e larvas de nematódeos gastrintestinais como uma alternativa para o manejo de pastagens de saúde tem se intensificado nos últimos anos, bem como o uso concomitante com outros medicamentos antiparasitários. O objetivo deste estudo foi testar o efeito in vitro dos fármacos Ivermectina e Albendazol em fungos nematófagos Paecilomyces fumosoroseus, Paecilomyces lilacinus e Paecilomyces variotii. Foi utilizada a técnica de difusão em agar, sendo preparado a partir de uma concentração inicial de 0,0016g/mL de cada uma das drogas e diluídas em meio de cultura, com posterior semeadura dos fungos nematófagos. Os resultados mostraram que na concentração de 80μg/mL, o crescimento diminuiu, no entanto, com a concentração de 160μg/mL de ambas as drogas, não houve crescimento de fungos durante o período de estudo, em comparação com o controle, indicando a inibição do desenvolvimento dos fungos nematófagos estudados quando em contato com a Ivermectina e Albendazol.


Subject(s)
Ivermectin/pharmacology , Paecilomyces/drug effects , Albendazole/pharmacology , Antiparasitic Agents/pharmacology , Paecilomyces/growth & development , Microbial Sensitivity Tests
2.
Braz. j. biol ; 75(3): 541-547, Aug. 2015. ilus
Article in English | LILACS | ID: lil-761593

ABSTRACT

AbstractThe introduction of biodiesel to diesel may allow the fuel to be more susceptible to microorganism growth, especially during incorrect storage. To evaluate the effect of adding biodiesel in pure diesel on the growth of Paecilomyces variotii, microcosms containing pure diesel (B0), blend diesel/biodiesel (B7) and pure biodiesel (B100) were used. In microcosm with minimal mineral medium and B0, B7 or B100, after 60 days, the biomass (dry weight) formed at interface oil-water in B7 and B100 was significantly higher when compared to that of B0. Infrared analysis showed reduction of the carbonile fraction in B7 and B100 suggesting formation of intermediate compounds in B7. To monitor possible contamination of fuel storage tank by P. variotii samples were collected and analysed by specific-PCR assay for detection of P. variotii spores in the aqueous phase. This method was able to detect a minimum of 103 spores ml–1, corresponding to 0.0144 ng µl–1 of DNA. Specificity was tested against Aspergillus fumigatus and Pseudallescheria boydii.


ResumoA introdução de biodiesel ao diesel pode permitir que o combustível se torne mais suscetível ao crescimento de microorganismos, especialmente durante o armazenamento incorreto. Para analisar o efeito da adição de biodiesel em diesel puro no crescimento de Paecilomyces variotii, avaliou-se seu desenvolvimento em microcosmos contendo diesel puro (B0), mistura diesel/biodiesel (B7) e biodiesel puro (B100). Em microcosmos com meio mineral mínimo e B0, B7 ou B100, após 60 dias, a biomassa (peso seco) formada na interface óleo-agua com B7 e B100 foi significativamente maior quando comparada com a de B0. A análise de infravermelho mostrou redução da fração carbonila em B7 e B100, sugerindo a formação de compostos intermediários em B7. Para monitorar uma possível contaminação de tanque de armazenamento de combustível por P. variotii, amostras foram colhidas e analisadas por um teste de PCR específico para detecção de esporos deste fungo em fase aquosa. Este método foi capaz de detectar um mínimo de 103 esporos ml–1, correspondente a 0.0144 ng µl–1 de DNA. Especificidade foi testada contra Aspergillus fumigatus e Pseudallescheria boydii.


Subject(s)
Biofuels/microbiology , Gasoline/microbiology , Paecilomyces/growth & development , Glycine max/chemistry , Paecilomyces/drug effects
3.
Braz. j. med. biol. res ; 38(11): 1585-1592, Nov. 2005.
Article in English | LILACS | ID: lil-414712

ABSTRACT

Lactococcus lactis, the model lactic acid bacterium, is a good candidate for heterologous protein production in both foodstuffs and the digestive tract. We attempted to produce Streptomyces tendae antifungal protein 1 (Afp1) in L. lactis with the objective of constructing a strain able to limit fungal growth. Since Afp1 activity requires disulfide bond (DSB) formation and since intracellular redox conditions are reportedly unfavorable for DSB formation in prokaryotes, Afp1 was produced as a secreted form. An inducible expression-secretion system was used to drive Afp1 secretion by L. lactis; Afp1 was fused or not with LEISSTCDA, a synthetic propeptide (LEISS) that has been described to be a secretion enhancer. Production of Afp1 alone was not achieved, but production of LEISS-Afp1 was confirmed by Western blot and immunodetection with anti-Afp1 antibodies. This protein (molecular mass: 9.8 kDa) is the smallest non-bacteriocin heterologous protein ever reported to be secreted in L. lactis via the Sec-dependent pathway. However, no anti-fungal activity was detected, even in concentrated samples of induced supernatant. This could be due to a too low secretion yield of Afp1 in L. lactis, to the absence of DSB formation, or to an improper DSB formation involving the additional cysteine residue included in LEISS propeptide. This raises questions about size limits, conformation problems, and protein secretion yields in L. lactis.


Subject(s)
Lactococcus lactis/metabolism , Bacterial Proteins , Carrier Proteins , Antifungal Agents/isolation & purification , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Aspergillus fumigatus/drug effects , Blotting, Western , Microbial Sensitivity Tests , Paecilomyces/drug effects , Plasmids/genetics , Bacterial Proteins/genetics , Bacterial Proteins/pharmacology , Carrier Proteins/genetics , Carrier Proteins/pharmacology , Trichophyton/drug effects
4.
Genet. mol. biol ; 22(1): 119-23, Mar. 1999. tab, ilus
Article in English | LILACS | ID: lil-243520

ABSTRACT

The entomopathogenic fungi Paecilomyces fumosoroseus and P. lilacinus have been transformed to resistance to the fungicide benomyl by a polyethylene glycol (PEG)-mediated procedure using a mutant b-tubulin gene from Neurospora crassa carried on plasmid pBT6. Benomyl-resistant transformants of P. lilacinus were obtained that could tolerate greater than 30 µg/ml benomyl and P. fumosoroseus transformants were obtained that could tolerate 20 µg/ml benomyl. Following 5 serial passages of transformants on benomyl-containing media and 5 serial passages on non-selective media, 100 per cent of P. lilacinus transformants were found to be mitotically stable by a conidial germination test. In contrast, only 4 out of 9 transformants of P. fumosoroseus were mitotically stable. Southern blot analysis of genomic DNA from both species suggested that the mechanism of transformation in all transformants was by gene replacement of the b-tubulin allele. Non-homologous vector sequences were not detectable in the genomes of transformants.


Subject(s)
Benomyl/pharmacology , Fungicides, Industrial/pharmacology , Paecilomyces/drug effects , Paecilomyces/genetics , Transformation, Genetic , Blotting, Southern , DNA , Nucleic Acid Hybridization , Plasmids , Drug Resistance, Microbial
SELECTION OF CITATIONS
SEARCH DETAIL