Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Chinese Journal of Biotechnology ; (12): 1050-1060, 2022.
Article in Chinese | WPRIM | ID: wpr-927762

ABSTRACT

As the only translational factor that plays a critical role in two translational processes (elongation and ribosome regeneration), GTPase elongation factor G (EF-G) is a potential target for antimicrobial agents. Both Mycobacterium smegmatis and Mycobacterium tuberculosis have two EF-G homologous coding genes, MsmEFG1 (MSMEG_1400) and MsmEFG2 (MSMEG_6535), fusA1 (Rv0684) and fusA2 (Rv0120c), respectively. MsmEFG1 (MSMEG_1400) and fusA1 (Rv0684) were identified as essential genes for bacterial growth by gene mutation library and bioinformatic analysis. To investigate the biological function and characteristics of EF-G in mycobacterium, two induced EF-G knockdown strains (Msm-ΔEFG1(KD) and Msm-ΔEFG2(KD)) from Mycobacterium smegmatis were constructed by clustered regularly interspaced short palindromic repeats interference (CRISPRi) technique. EF-G2 knockdown had no effect on bacterial growth, while EF-G1 knockdown significantly retarded the growth of mycobacterium, weakened the film-forming ability, changed the colony morphology, and increased the length of mycobacterium. It was speculated that EF-G might be involved in the division of bacteria. Minimal inhibitory concentration assay showed that inhibition of EF-G1 expression enhanced the sensitivity of mycobacterium to rifampicin, isoniazid, erythromycin, fucidic acid, capreomycin and other antibacterial agents, suggesting that EF-G1 might be a potential target for screening anti-tuberculosis drugs in the future.


Subject(s)
Antitubercular Agents/pharmacology , Bacterial Proteins/metabolism , Drug Resistance , Mycobacterium smegmatis/metabolism , Peptide Elongation Factor G/pharmacology
2.
Hamdard Medicus. 2011; 54 (2): 5-13
in English | IMEMR | ID: emr-137315

ABSTRACT

Over the last 25 years, neurobiologists have begun to unravel the cellular mechanisms that underlie epileptiform activity. Such investigations have two main objectives: [1] to develop new methods for treating, [curing], or preventing epilepsy; and [2] to learn more about the normal functioning of the human brain, at the cellular/molecular and neurological/psychological levels by analyzing abnormal brain functioning. The electroencephalogram [EF.G] spike is a marker for the hyperexcitable cortex and arises in or near an area with a high epileptogenic potential. The depolarizing shift [DS] that underlies the interictal discharge [ID] appears to be generated by a combination of excitatory synaptic currents and intrinsic voltage-dependent membrane currents. The hyperpolarization that follows the DS [post-DS-1 IT] hunts ID duration, determines ID frequency, and prevents ID deterioration into seizures. The disappearance of the post-DS I IP in some models is related to the onset of seizures and the spread of epileptiform activity. During the transition to seizures, the usually self-limited ID spreads in time and anatomical space. Several processes may intervene in the pathophysiolpgical dysfunction. These include enhancing GABA-mediated inhibition, dampening NMDA-mediated excitability, interfering with specific Ca[2+] currents in central neurons, and perhaps stimulating [gating] pathways


Subject(s)
Humans , Epilepsy/prevention & control , Seizures/therapy , Electroencephalography , Peptide Elongation Factor G , Neurons
SELECTION OF CITATIONS
SEARCH DETAIL