Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Journal of Korean Medical Science ; : 368-374, 2009.
Article in English | WPRIM | ID: wpr-79584

ABSTRACT

This study was undertaken to evaluate the therapeutic effects of topical ozonated olive oil on acute cutaneous wound healing in a guinea pig model and also to elucidate its therapeutic mechanism. After creating full-thickness skin wounds on the backs of guinea pigs by using a 6 mm punch biopsy, we examined the wound healing effect of topically applied ozonated olive oil (ozone group), as compared to the pure olive oil (oil group) and non-treatment (control group). The ozone group of guinea pig had a significantly smaller wound size and a residual wound area than the oil group, on days 5 (P<0.05) and 7 (P<0.01 and P<0.05) after wound surgery, respectively. Both hematoxylin-eosin staining and Masson-trichrome staining revealed an increased intensity of collagen fibers and a greater number of fibroblasts in the ozone group than that in the oil group on day 7. Immunohistochemical staining demonstrated upregulation of platelet derived growth factor (PDGF), transforming growth factor-beta (TGF-beta) and vascular endothelial growth factor (VEGF) expressions, but not fibroblast growth factor expression in the ozone group on day 7, as compared with the oil group. In conclusion, these results demonstrate that topical application of ozonated olive oil can accelerate acute cutaneous wound repair in a guinea pig in association with the increased expression of PDGF, TGF-beta, and VEGF.


Subject(s)
Animals , Female , Acute Disease , Administration, Topical , Guinea Pigs , Ozone/administration & dosage , Plant Oils/administration & dosage , Platelet-Derived Growth Factor/metabolism , Skin/drug effects , Transforming Growth Factor beta/metabolism , Vascular Endothelial Growth Factor A/metabolism , Wound Healing/drug effects
3.
Yonsei Medical Journal ; : 804-810, 2008.
Article in English | WPRIM | ID: wpr-153696

ABSTRACT

PURPOSE: Obesity is a major risk factor for asthma and it influences airway smooth muscle function and responsiveness. Adiponectin is inversely associated with obesity and its action is mediated through at least 2 cell membrane receptors (AdipoR1 and AdipoR2). Leptin is positively associated with obesity. We investigated whether human airway smooth muscle (ASM) cells express adiponectin receptors and whether adiponectin and leptin regulate human ASM cell proliferation and vascular endothelial growth factor (VEGF) release. MATERIALS AND METHODS: Human ASM cells were growth-arrested in serum-deprived medium for 48 hours and then stimulated with PDGF, adiponectin and leptin. After 48 hours of stimulation, proliferation was determined using a cell proliferation ELISA kit. Human AdipoR1 and -R2 mRNA expressions were determined by RT-PCR using human-specific AdipoR1 and -R2 primers. Concentrations of VEGF, monocyte chemotactic protein (MCP)-1 and macrophage inflammatory protein (MIP)-1alpha in cell culture supernatant were determined by ELISA. RESULTS: Both AdipoR1 and AdipoR2 mRNA were expressed in the cultured human ASM cells. However, adiponectin did not suppress PDGF-enhanced ASM cell proliferation, nor did leptin promote ASM cell proliferation. Leptin promoted VEGF release by human ASM cells, while adiponectin did not influence VEGF release. Neither leptin nor adiponectin influenced MCP-1 secretion from human ASM cells. Adiponectin and MIP-1alpha were not secreted by human ASM cells. CONCLUSION: Human ASM cells expressed adiponectin receptors. However, adiponectin did not regulate human ASM cell proliferation or VEGF release, while leptin stimulated VEGF release by human ASM cells.


Subject(s)
Humans , Adiponectin/metabolism , Cell Proliferation/drug effects , Cells, Cultured , Chemokine CCL2/metabolism , Chemokine CCL3/metabolism , Leptin/metabolism , Myocytes, Smooth Muscle/cytology , Obesity/metabolism , Platelet-Derived Growth Factor/metabolism , Receptors, Adiponectin/metabolism , Respiratory System/cytology , Vascular Endothelial Growth Factor A/metabolism
4.
Acta cir. bras ; 21(supl.1): 54-57, 2006.
Article in English, Portuguese | LILACS | ID: lil-438807

ABSTRACT

The cirrhosis represents the final stage of several chronic hepatic diseases and it is characterized by the presence of fibrosis and morphologic conversion from the normal hepatic architecture into structurally abnormal nodules. In the evolution of the disease there is loss of the normal vascular relationship and portal hypertension. There are also regenerative hepatocelular alterations that become more prominent with the progression of the disease. The liver transplantation continues to be the only therapeutic option in cases of disease in terminal phase. The hepatic stellate cells (HSC) are perisinusoidal cells that store vitamin A and produce growth factors, citocins, prostaglandins and other bioactive substances. They can suffer an activation process that convert them to cells with a phenotype similar to myofibroblasts. When activated, they present increased capacity of proliferation, mobility, contractility and synthesis of collagen and other components of extracelular matrix. They possess cytoplasmic processes adhered to sinusoids and can affect the sinusoidal blood flow. HSC are important in pathogenesis of fibrosis and portal hypertension.


A cirrose representa o estágio final de diversas doenças hepáticas crônicas e é caracterizada pela presença de fibrose e conversão da arquitetura hepática normal em nódulos estruturalmente anormais. Na evolução da doença ocorre perda da relação vascular normal e hipertensão portal. Há também alterações regenerativas hepatocelulares que se tornam mais proeminentes com a progressão da doença. O transplante hepático permanece como a única opção terapêutica nos casos de doença em fase terminal. As células estreladas hepáticas (CEH) são células perisinusoidais que armazenam vitamina A e produzem fatores de crescimento, citocinas, prostaglandinas e outras substâncias bioativas. Podem sofrer um processo de ativação para um fenótipo semelhante a miofibroblastos. Quando ativadas apresentam maior capacidade de proliferação, motilidade, contractilidade, síntese de colágeno e componentes da matriz extracelular. Possuem processos citoplasmáticos aderidos aos sinusóides e podem afetar o fluxo sangüíneo sinusoidal. As CEH são importantes na patogênese da fibrose e hipertensão portal.


Subject(s)
Humans , Adult , Hepatocytes/metabolism , Kupffer Cells/metabolism , Liver Cirrhosis/physiopathology , Liver/metabolism , Cell Proliferation , Disease Progression , Extracellular Matrix/metabolism , Hepatocyte Growth Factor/metabolism , Hepatocytes/cytology , Hypertension, Portal/complications , Kupffer Cells/cytology , Liver Cirrhosis/etiology , Liver Cirrhosis/metabolism , Liver Failure/complications , Liver/cytology , Myocytes, Smooth Muscle/metabolism , Paracrine Communication/physiology , Platelet-Derived Growth Factor/metabolism
5.
Biocell ; 27(2): 189-196, Aug. 2003.
Article in English | LILACS | ID: lil-384244

ABSTRACT

Remodeling of large and small arteries contributes to the development and complications of hypertension. Artery structural changes in chronic sustained hypertension include vascular smooth muscle cells (VSMC) proliferation and extracellular matrix (ECM) modifications. Extracellular constituents such as proteoglycans (PGs), may modulate vascular stiffness and VSMC growth and differentiation. We examined the effect of growth factors on secreted and membrane-bound PGs synthesis by cultured aortic smooth muscle cells (SMC) from 12- to 14- week-old spontaneously hypertensive rats (SHR) and age-matched Wistar rats. After stimulation with platelet-derived growth factor (PDGF-BB), 10% fetal calf serum (FCS) or 0.1% FCS as control, PGs synthesis (dpm/ng DNA) was evaluated in the medium (M-ECM) and in the cell layer (P-ECM) by a double-isotopic label method using both [3H]-glucosamine and [35S]-sodium sulfate which are incorporated into all complex carbohydrates or only into sulfated dysaccharides, respectively. Data are presented as percent of the control (0.1% FCS). SHR VSMC displayed a significantly greater synthesis of M-ECM [3H]-PGs than Wistar rat cells, with both treatments, but no differences in M-ECM [35S] uptake were found in any case. In the P-ECM, both PDGF-BB and 10% FCS produced a greater effect on [3H]-PGs and sulfated PGs synthesis in VSMC from SHR. An important change seen in SHR cells was a significant decreased sulfation, assessed by [35S]/[3H] ratio, in basal and stimulation conditions. Present results indicate the existence of changes in PGS synthesis and modulation in VSMC from a conduit-artery of SHR and support the pathophysiological role proposed for matrix proteoglycans in the vascular wall changes associated to hypertension and related vascular diseases as atherosclerosis.


Subject(s)
Male , Aorta/metabolism , Hypertension/metabolism , Hypertrophy/metabolism , Extracellular Matrix/metabolism , Muscle, Smooth, Vascular/metabolism , Proteoglycans/metabolism , Aorta/cytology , Arteriosclerosis/metabolism , Arteriosclerosis/pathology , Arteriosclerosis/physiopathology , Cells, Cultured , Cell Division/drug effects , Cell Division/physiology , Platelet-Derived Growth Factor/metabolism , Platelet-Derived Growth Factor/pharmacology , Glucosamine/metabolism , Extracellular Matrix/drug effects , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular , Proteoglycans/drug effects , Proteoglycans , Rats , Rats, Inbred SHR , Sulfur Radioisotopes , Sulfates/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL