Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Biomédica (Bogotá) ; 36(4): 619-631, dic. 2016. graf
Article in Spanish | LILACS | ID: biblio-950928

ABSTRACT

Resumen Introducción. El grupo de investigación del Laboratorio de Neurofisiología Comportamental de la Universidad Nacional de Colombia ha descrito modificaciones estructurales y electrofisiológicas en neuronas piramidales de la corteza motora producidas por la lesión del nervio facial contralateral en ratas. Sin embargo, poco se sabe sobre la posibilidad de que dichos cambios neuronales se acompañen también de modificaciones en las células gliales circundantes. Objetivo. Caracterizar el efecto de la lesión unilateral del nervio facial sobre la activación y proliferación de las células de la microglía en la corteza motora primaria contralateral en ratas. Materiales y métodos. Se hicieron pruebas de inmunohistoquímica para detectar las células de la microglía en el tejido cerebral de ratas sometidas a lesión del nervio facial, las cuales se sacrificaron en distintos momentos después de la intervención. Se infligieron dos tipos de lesiones: reversible (por compresión, lo cual permite la recuperación de la función) e irreversible (por corte, lo cual provoca parálisis permanente). Los tejidos cerebrales de los animales sin lesión (grupo de control absoluto) y de aquellos sometidos a falsa cirugía se compararon con los de los animales lesionados sacrificados 1, 2, 7, 21 y 35 días después de la lesión. Resultados. Las células de la microglía en la corteza motora de los animales lesionados irreversiblemente mostraron signos de proliferación y activación entre el tercero y séptimo días después de la lesión. La proliferación de las células de la microglía en animales con lesión reversible fue significativa solo a los tres días de infligida la lesión. Conclusiones. La lesión del nervio facial produce modificaciones en las células de la microglía de la corteza motora primaria. Estas modificaciones podrían estar involucradas en los cambios morfológicos y electrofisiológicos descritos en las neuronas piramidales de la corteza motora que comandan los movimientos faciales.


Abstract Introduction: Our research group has described both morphological and electrophysiological changes in motor cortex pyramidal neurons associated with contralateral facial nerve injury in rats. However, little is known about those neural changes, which occur together with changes in surrounding glial cells. Objective: To characterize the effect of the unilateral facial nerve injury on microglial proliferation and activation in the primary motor cortex. Materials and methods: We performed immunohistochemical experiments in order to detect microglial cells in brain tissue of rats with unilateral facial nerve lesion sacrificed at different times after the injury. We caused two types of lesions: reversible (by crushing, which allows functional recovery), and irreversible (by section, which produces permanent paralysis). We compared the brain tissues of control animals (without surgical intervention) and sham-operated animals with animals with lesions sacrificed at 1, 3, 7, 21 or 35 days after the injury. Results: In primary motor cortex, the microglial cells of irreversibly injured animals showed proliferation and activation between three and seven days post-lesion. The proliferation of microglial cells in reversibly injured animals was significant only three days after the lesion. Conclusions: Facial nerve injury causes changes in microglial cells in the primary motor cortex. These modifications could be involved in the generation of morphological and electrophysiological changes previously described in the pyramidal neurons of primary motor cortex that command facial movements.


Subject(s)
Animals , Male , Rats , Microglia/pathology , Facial Nerve Injuries/pathology , Facial Paralysis/physiopathology , Motor Cortex/pathology , Time Factors , Random Allocation , Afferent Pathways , Cell Division , Rats, Wistar , Pyramidal Cells/physiology , Pyramidal Cells/pathology , Axotomy , Facial Nerve Injuries/complications , Facial Nerve Injuries/physiopathology , Facial Muscles/innervation , Facial Paralysis/etiology , Facial Paralysis/pathology , Nerve Crush , Nerve Regeneration
2.
Int. j. morphol ; 33(3): 962-970, Sept. 2015. ilus
Article in English | LILACS | ID: lil-762571

ABSTRACT

Hypoxia-ischemia (HI) is a major cause of brain damage in the newborn. Several studies elicited the neuroprotective effects of progesterone in adult rats but there is very little literature available on neonatal rats. Therefore the present study is undertaken to see the effect of progesterone in hypoxic ischemic brain injury in neonatal rats, using an established neonatal HI rat pup model. Seven-day-old rat pups were subjected to right common carotid artery ligation and then 60 minutes hypoxia. The first dose of progesterone to treatment group was administered by peritoneal injection (4 mg/kg), after 10 minutes of exposure and subsequent doses were given by subcutaneous injection at 6 h, 24 h and 48 h intervals. Control group was also exposed to HI and was given only the vehicle (peanut oil) through the same route and intervals as that of treatment group. After 96 h, the pups were perfused with 10% formalin and brains were sampled and stained with toluidine blue. Cells density and number of pyramidal cells of the hippocampal Cornu Ammonis (CA) regions were examined by stereological methods. The histomorphometric assessment of the effects of progesterone showed minimal but no significant protective value in the volume, cells density and total number of pyramidal cells of hippocampal CA region of the treatment and control groups (p>0.05) after HI. Our results concluded that 4 mg/kg of PROG had no significant neuroprotective effect in HI model of the neonatal rat's hippocampus.


La hipoxia-isquémica (HI) es una causa importante de daño cerebral en el recién nacido. Varios estudios indican los efectos neuroprotectores de la progesterona en ratas adultas, sin embargo existe poca literatura disponible en ratas recién nacidas. Por tanto, el presente estudio se llevó a cabo para ver el efecto de la progesterona en la lesión cerebral HI en ratas recién nacidas, utilizando un modelo de cría de rata neonata HI establecido. A los siete días de nacidas, las crías de ratas fueron sometidas a la ligadura de la arteria carótida común derecha y luego 60 minutos de hipoxia. La primera dosis de progesterona fue administrada al grupo de tratamiento mediante inyección peritoneal (4 mg/kg), después de 10 minutos de exposición y las dosis posteriores fueron administradas por inyecciones subcutáneas en intervalos de 6 h, 24 h y 48 h. El grupo control también fue expuesto a HI y se le administró solamente aceite de cacahuete a través de la misma ruta y con los intervalos que recibió el grupo de tratamiento. Después de 96 h, las crias fueron perfundidas con formalina al 10% y se tomaron muestras de los cerebros, los que se tiñeron con azul de toluidina. La densidad celular y el número de células piramidales de las regiones del hipocampo Cornu Ammonis (CA) fueron examinadas por métodos estereológicos. La evaluación histomorfométrica de los efectos de la progesterona mostró un valor protector mínimo, pero no significativo en el volumen, densidad de las células y el número total de células piramidales de la región de CA del hipocampo de los grupos de tratamiento y control (p>0,05) después de HI. En conclusión, nuestros resultados indican que 4 mg/kg de progesterona no tuvo efecto neuroprotector significativo en el modelo de HI del hipocampo de ratas neonatas.


Subject(s)
Animals , Male , Rats , Hippocampus/drug effects , Hypoxia-Ischemia, Brain/pathology , Progesterone/pharmacology , Animals, Newborn , Hippocampus/cytology , Hippocampus/pathology , Neuroprotective Agents , Pyramidal Cells/drug effects , Pyramidal Cells/pathology , Rats, Sprague-Dawley
3.
Int. j. morphol ; 33(3): 1120-1125, Sept. 2015. ilus
Article in English | LILACS | ID: lil-762595

ABSTRACT

A few studies reported the adverse effects of gestational diabetes on hippocampus and spinal cord of rat offspring. Giant pyramidal neurons are giant pyramidal neurons located in fifth layers of the gray matter in the primary motor cortex. Therefore, this study was conducted to determine the effect of gestational diabetes on the giant pyramidal neurons and the thickness of internal pyramidal layer in the brain cortex of rat offspring. On day 1 of gestation, 10 Wistar rat dams were randomly allocated into two control and diabetic groups. Five animals in diabetic group received 40 mg/kg/BW of Streptozotocin (intraperitoneally) and control animals received normal saline. We randomly selected six offspring of every subject in both groups at day 28, 56 and 84. Rat offspring were scarified and then coronal sections were taken from the right brain cortex and sections were stained with Cresyl violet. The density of giant pyramidal neurons in brain cortex and thickness of internal pyramidal layer of brain cortex were evaluated. In P28, P56, P84 the Betz cells density of brain cortex were significantly reduced from 107.6±6.2, 131.6±4.6 and 143.5±4.0 in controls to 84.96±2.1, 109.8±7.3 and 121.05±5.6 in cases (p<0.05), respectively. The thickness of the internal pyramidal layer of brain cortex in P28, 56 and P84 was significantly higher in gestational diabetic group in comparison with the control group (p<0.05). This study showed that uncontrolled gestational diabetes reduces the giant pyramidal neurons density and internal pyramidal layer thickness in brain cortex of rat offspring.


Pocos estudios han informado de los efectos adversos de la diabetes gestacional sobre las células del hipocampo y médula espinal. Este estudio, se realizó para determinar el efecto de la diabetes gestacional sobre las neuronas piramidales gigantes ubicadas en la quinta capas de la sustancia gris en la corteza motora primaria y el espesor de la capa piramidal interna en la corteza cerebral en crías de ratas. En el día 1 de la gestación, 10 ratas Wistar se asignaron aleatoriamente en dos grupos: control y diabéticos. Cinco animales del grupo diabético, fueron inyectados con 40 mg/kg de peso corporal de estreptozotocina (por vía intraperitoneal), y los de el grupo control, con solución salina. Aleatoriamente, se seleccionaron seis crías de cada hembra de ambos grupos los días 28, 56 y 84. Las crías fueron sacrificadas, se tomaron secciones coronales de la corteza cerebral derecha y se tiñeron con violeta de cresilo. Se evaluó la densidad de las neuronas piramidales gigantes en la corteza cerebral y el espesor de la capa piramidal interna de la corteza cerebral. En los días 28, 56, 84 la densidad de las neuronas piramidales gigantes en corteza cerebral se redujo significativamente al comparar los controles (107,6±6,2, 131,6±4,6 y 143,5±4,0 respectivamente) con los casos (84,96±2,1, 109,8±7,3 y 121,05±5,6 respectivamente) (p<0,05). El espesor de la capa piramidal interna de la corteza cerebral en los días 28, 84 y 56 fue significativamente mayor en el grupo diabético gestacional en comparación con el grupo control (p<0,05). Este estudio muestra que la diabetes gestacional no controlada reduce la densidad de neuronas piramidales gigantesy el espesor interno de la capa piramidal en la corteza cerebral de las crías de rata.


Subject(s)
Animals , Male , Female , Pregnancy , Infant, Newborn , Rats , Cerebral Cortex/pathology , Diabetes, Gestational/pathology , Pyramidal Cells/pathology , Animals, Newborn , Blood Glucose/analysis , Neurons/pathology , Prenatal Exposure Delayed Effects , Rats, Wistar
4.
Al-Azhar Medical Journal. 2009; 38 (4): 925-937
in English | IMEMR | ID: emr-128696

ABSTRACT

Lead represents a toxin which affects the developing nervous system with neuro-behavioural deficits. The present study was planned with the aim of studying the morphological changes that might occur in the cerebrum of the young rats in response to two different doses of the lead for 3 months, and discover whether these changes are reversible or irreversible. Fifty young albino rats, aged 4-5 weeks, were used in the present work. They are classified into 3 groups: a control group [10 rats], group "A" [20 rats] received a low dose of lead acetate for 3 months, and group "B" [20 rats] received a high dose of lead acetate for 3 months. Ten rats of both groups "A" and "B" were sacrificed one month after the last given dose of lead [ie. recovery animals]. The cerebral cortex of the young rats of the group "A" showed that pyramidal cell neurons are little in number. Some of them are atrophic and other showed either degenerating mitochondria and dilated Golgi apparatus or ill-defined cytoplasmic organelles. Also, there is obvious perivascular oedema. In addition, most myelinated axons showed vacuolation of their myelin sheaths. The cerebral cortex of the young rats of the group "B" showed that most of the pyramidal cell neurons are distorted, with irregular nuclear membrane, proliferative endoplasmic reticulum, dilated Golgi apparatus and degenerating mitochondria. Also, wide-spread gliosis and extensive pericellular oedema were evident. Most myelinated axons showed vacuolation of myelin sheaths, and vacuolated or ill-defined axoplasm. The cerebral cortex of the recovery animals of the group "A" showed nearly complete recovery, while that of the group "B" showed incomplete recovery in the form of perivascular oedema and abnormal myelinated and non-myelinated axons


Subject(s)
Animals, Laboratory , Cerebral Cortex/ultrastructure , Microscopy, Electron , Chronic Disease , Pyramidal Cells/pathology , Rats
5.
Indian J Physiol Pharmacol ; 1998 Oct; 42(4): 460-6
Article in English | IMSEAR | ID: sea-106681

ABSTRACT

The effects of bilateral electrolytic subicular lesions were examined on the operant behaviour for food reward on a continuous reinforcement schedule as well as the dendritic morphology of CA1 and CA3 hippocampal areas. The subjects were female Wistar rats 20 days of age and were divided into four groups. 1. Age matched control 2. Sham operated 3. Operant behaviour for food reward and 4. Subicular lesion. Animals were starved twenty-four hours prior to operant behaviour training sessions. Two trial sessions with continuous reinforcement (CRF) of 10 min duration/day were done during training sessions following which the rats were allowed CRF for ten minutes per day for ten days. On the eleventh day, the operant behaviour and sham operated animals were taken up for bilateral subicular lesion and sham surgery respectively. After seventy two hours of surgical recovery, operant behavioural testing was done as before for a further period of ten days. Later all the groups of animals were sacrificed and the hippocampi were processed for rapid Golgi staining technique. Our results suggest that subicular lesions do produce a significant reduction in operant learning behaviour for food reward. Further the Golgi studies revealed a reduction in dendritic branching points and intersections of apical and basal CA1, CA3 neurons in lesioned animals.


Subject(s)
Animals , Conditioning, Operant/physiology , Dendrites/pathology , Female , Hippocampus/injuries , Pyramidal Cells/pathology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL