Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Braz. arch. biol. technol ; 63: e20190555, 2020. tab, graf
Article in English | LILACS | ID: biblio-1132270

ABSTRACT

Abstract The bacterial species employ various types of molecular communication systems recognized as quorum sensing for the synchronization of differential gene expression to regulate virulence traits and biofilm formation. A variety of quorum sensing inhibitors; molecules that interfere with quorum sensing among bacteria have been examined which can block the action of autoinducers. Moreover, the studies have scrutinized various enzymes for their quorum quenching activity resulting in the degradation of signaling molecules or blocking of gene expression. So far, the studies have found that these approaches are not only capable to reduce the pathogenicity and biofilm formation but also resulted in increased bacterial susceptibility to antibiotics and bacteriophages. The effectiveness of these strategies has been validated in different animal models and it seems that these practices will be transformed in near future to develop the medical devices including catheters, implants, and dressings for the prevention of bacterial infections. Although many of these approaches are still in the research stage, the increasing library of quorum quenching molecules and enzymes will open innovative perspectives for the development of antibacterial approaches which will extend the therapeutic arsenal against the pathogenic bacterial species.


Subject(s)
Animals , Mice , Rabbits , Bacterial Infections/metabolism , Biofilms/drug effects , Quorum Sensing/drug effects , Anti-Bacterial Agents/pharmacology , Caenorhabditis elegans/microbiology , Models, Animal
2.
Rev. Soc. Bras. Med. Trop ; 53: e20200399, 2020. tab, graf
Article in English | SES-SP, ColecionaSUS, LILACS | ID: biblio-1136908

ABSTRACT

Abstract INTRODUCTION: Pseudomonas aeruginosa is an opportunistic pathogen associated with healthcare-related infections, affecting mainly patients with underlying diseases and immunosuppression. This microorganism has several virulence mechanisms that favour its pathogenesis, including the production of biofilm. This study aimed to analyze the phenotypic production of biofilms, the occurrence of quorum sensing (QS) genes, and the clonal profile of clinical isolates of P. aeruginosa from colonized/infected patients in a tertiary hospital in Recife-PE. METHODS: We obtained 21 isolates that were classified as infection isolates (II), and 10 colonization isolates (CI). The phenotypic analysis for biofilm production was performed quantitatively. The QS genes were detected by specific PCRs, and the clonal profile was assessed using ERIC-PCR. RESULTS: Of the 31 isolates, 58.1 % (18/31) were biofilm producers, of which 70 % (7/10) were CI and classified as weakly adherent; 52.4 % (11/21) of the II produced biofilms, and were classified as weak (38.1 %, (8/21)), moderate (9.5 %, (2/21)), and strongly adherent (4.8 %, (1/21)). All isolates harbored the QS genes analyzed. In the clonal analysis, 26 distinct genetic profiles were identified, highlighting the presence of a clone in four samples, i.e., one infection isolate, and 3 colonization isolates. CONCLUSIONS: The detection of biofilm formation is important in P. aeruginosa in addition to the identification of colonization and infection isolates, especially from complex environments such as ICUs. Further, we define a strategy for monitoring and analyzing P. aeruginosa strains that can potentially cause infections in hospitalized patients.


Subject(s)
Humans , Pseudomonas aeruginosa/genetics , Pseudomonas Infections , Phenotype , Virulence/genetics , Biofilms , Virulence Factors , Quorum Sensing/drug effects , Genotype , Anti-Bacterial Agents/pharmacology
3.
Rev. Soc. Bras. Med. Trop ; 48(4): 432-436, July-Aug. 2015. ilus
Article in English | LILACS | ID: lil-755960

ABSTRACT

AbstractINTRODUCTION:

Chamomile ( Chamaemelum nobile ) is widely used throughout the world, and has anti-inflammatory, deodorant, bacteriostatic, antimicrobial, carminative, sedative, antiseptic, anti-catarrhal, and spasmolytic properties. Because of the increasing incidence of drug-resistant bacteria, the development of natural antibacterial sources such as medical herbs for the treatment of infectious diseases is necessary. Extracts from different plant parts such as the leaves, flowers, fruit, and bark of Combretum albiflorum, Laurus nobilis , and Sonchus oleraceus were found to possess anti-quorum sensing (QS) activities. In this study, we evaluated the effect of C. nobile against Pseudomonas aeruginosa biofilm formation

METHODS:

The P. aeruginosa samples were isolated from patients with different types of infection, including wound infection, septicemia, and urinary tract infection. The flowers of C. nobile were dried and the extract was removed using a rotary device and then dissolved in dimethyl sulfoxide at pH 7.4. The microdilution method was used to evaluate the minimum inhibitory concentration (MIC) of this extract on P. aeruginosa , and biofilm inhibition was assayed.

RESULTS:

Eighty percent of the isolated samples (16/20) could form a biofilm, and most of these were isolated from wound infections. The biofilm inhibitory concentration of the C. nobile extract was 6.25-25mg/ml, whereas the MIC was 12.5-50mg/ml.

CONCLUSIONS:

The anti-QS property of C. nobile may play an important role in its antibacterial activity, thus offering an additional strategy in the fight against bacterial infections. However, molecular investigation is required ...


Subject(s)
Humans , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Chamaemelum/chemistry , Plant Extracts/pharmacology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Microbial Sensitivity Tests , Pseudomonas aeruginosa/isolation & purification , Quorum Sensing/drug effects
4.
Braz. j. microbiol ; 45(3): 759-767, July-Sept. 2014. ilus, graf, tab
Article in English | LILACS | ID: lil-727000

ABSTRACT

Many Gram-negative pathogens have the ability to produce N-acylhomoserine lactones (AHLs) as signal molecules for quorum sensing (QS). This cell-cell communication system allows them to coordinate gene expression and regulate virulence. Strategies to inhibit QS are promising for the control of infectious diseases or antibiotic resistant bacterial pathogens. The aim of the present study was to evaluate the anti-quorum sensing (anti-QS) and antibacterial potential of five essential oils isolated from Lippia alba on the Tn-5 mutant of Chromobacterium violaceum CV026, and on the growth of the gram-positive bacteria S. aureus ATCC 25923. The anti-QS activity was detected through the inhibition of the QS-controlled violacein pigment production by the sensor bacteria. Results showed that two essential oils from L. alba, one containing the greatest geranial:neral and the other the highest limonene:carvone concentrations, were the most effective QS inhibitors. Both oils also had small effects on cell growth. Moreover, the geranial/neral chemotype oil also produced the maximum zone of growth inhibition against S. aureus ATCC 25923. These data suggest essential oils from L. alba have promising properties as QS modulators, and present antibacterial activity on S. aureus.


Subject(s)
Anti-Infective Agents/pharmacology , Chromobacterium/drug effects , Lippia/chemistry , Oils, Volatile/pharmacology , Quorum Sensing/drug effects , Staphylococcus aureus/drug effects , Anti-Infective Agents/isolation & purification , Chromobacterium/metabolism , Chromobacterium/physiology , Microbial Sensitivity Tests , Oils, Volatile/isolation & purification , Pigments, Biological/analysis , Staphylococcus aureus/growth & development
5.
Biol. Res ; 42(4): 427-436, 2009. ilus, tab, graf
Article in English | LILACS | ID: lil-537102

ABSTRACT

The objective of this study was to detect the presence of acyl homoserine lactones (AHLs), signal molecules of the quorum sensing system in biofilm formed by Hafnia alvei strains. It also evaluated the effect of synthetic quorum sensing inhibitors in biofilm formation. AHLs were assayed using well diffusion techniques, thin layer chromatography (TLC) and detection directly in biofilm with biomonitors. The extracts obtained from planktonic and sessile cell of H. alvei induced at least two of three monitor strains evaluated. The presence of AHLs with up to six carbon atoms was confirmed by TLC. Biofilm formation by H. alvei was inhibited by furanone, as demonstrated by 96-well assay of crystal violet in microtitre plates and by scanning electron microscopy. The H. alvei 071 hall mutant was deficient in biofilm formation. All these results showed that the quorum sensing system is probably involved in the regulation of biofilm formation by H. alvei.


Subject(s)
Animals , Acyl-Butyrolactones/metabolism , Biofilms/growth & development , Food Microbiology , Hafnia alvei/metabolism , Milk/microbiology , Chromatography, Thin Layer , Hafnia alvei/isolation & purification , Hafnia alvei/ultrastructure , Microscopy, Electron, Scanning , Quorum Sensing/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL