Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Journal of Zhejiang University. Science. B ; (12): 673-689, 2020.
Article in English | WPRIM | ID: wpr-1010547

ABSTRACT

Triple-negative breast cancer (TNBC) is currently the most malignant subtype of breast cancer without effective targeted therapies, which makes its pathogenesis an important target for research. A growing number of studies have shown that non-coding RNA (ncRNA), including microRNA (miRNA) and long non-coding RNA (lncRNA), plays a significant role in tumorigenesis. This review summarizes the roles of miRNA and lncRNA in the progression, diagnosis, and neoadjuvant chemotherapy of TNBC. Aberrantly expressed miRNA and lncRNA are listed according to their roles. Further, it describes the multiple mechanisms that lncRNA shows for regulating gene expression in the nucleus and cytoplasm, and more importantly, describes lncRNA-regulated TNBC progression through complete combining with miRNA at the post-transcriptional level. Focusing on miRNA and lncRNA associated with TNBC can provide new insights for early diagnosis and treatment-they can be targeted in the future as a novel anticancer target of TNBC.


Subject(s)
Female , Humans , Gene Expression Regulation, Neoplastic , MicroRNAs/physiology , Neoadjuvant Therapy , RNA, Long Noncoding/physiology , Triple Negative Breast Neoplasms/pathology
2.
Journal of Zhejiang University. Science. B ; (12): 179-191, 2020.
Article in English | WPRIM | ID: wpr-1010526

ABSTRACT

Non-small cell lung cancer (NSCLC) accounts for about 85% of all lung cancer cases. The pathogenesis of NSCLC involves complex gene networks that include different types of non-coding RNAs, such as long non-coding RNAs (lncRNAs). The role of lncRNAs in NSCLC is gaining an increasing interest as their function is being explored in various human cancers. Recently, a new oncogenic lncRNA, LINC00152 (cytoskeleton regulator RNA (CYTOR)), has been identified in different tumor types. In NSCLC, the high expression of LINC00152 in tumor tissue and peripheral blood samples has been shown to be associated with worse prognoses of NSCLC patients. Overexpression of LINC00152 has been confirmed to promote the proliferation, invasion, and migration of NSCLC cells in vitro, as well as increase tumor growth in vivo. This review discusses the role of LINC00152 in NSCLC.


Subject(s)
Humans , Apoptosis , Biomarkers, Tumor/blood , Carcinoma, Non-Small-Cell Lung/radiotherapy , Cell Cycle Checkpoints , Computational Biology , Epithelial-Mesenchymal Transition , Lung Neoplasms/radiotherapy , Prognosis , RNA, Long Noncoding/physiology , Radiation Tolerance
3.
Journal of Zhejiang University. Science. B ; (12): 122-136, 2020.
Article in English | WPRIM | ID: wpr-1010520

ABSTRACT

Polypyrimidine tract-binding protein 1 (PTBP1) plays an essential role in splicing and is expressed in almost all cell types in humans, unlike the other proteins of the PTBP family. PTBP1 mediates several cellular processes in certain types of cells, including the growth and differentiation of neuronal cells and activation of immune cells. Its function is regulated by various molecules, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and RNA-binding proteins. PTBP1 plays roles in various diseases, particularly in some cancers, including colorectal cancer, renal cell cancer, breast cancer, and glioma. In cancers, it acts mainly as a regulator of glycolysis, apoptosis, proliferation, tumorigenesis, invasion, and migration. The role of PTBP1 in cancer has become a popular research topic in recent years, and this research has contributed greatly to the formulation of a useful therapeutic strategy for cancer. In this review, we summarize recent findings related to PTBP1 and discuss how it regulates the development of cancer cells.


Subject(s)
Humans , Alternative Splicing , Carcinogenesis , Glycolysis , Heterogeneous-Nuclear Ribonucleoproteins/physiology , MicroRNAs/physiology , Neoplasms/pathology , Polypyrimidine Tract-Binding Protein/physiology , RNA, Long Noncoding/physiology
4.
Braz. j. med. biol. res ; 53(4): e9288, 2020. graf
Article in English | LILACS | ID: biblio-1089349

ABSTRACT

Diabetic nephropathy (DN) is one of the leading causes of mortality in diabetic patients. Long non-coding RNA zinc finger E-box binding homeobox 1 antisense 1 (ZEB1-AS1) plays a crucial role in the development of various diseases, including DN. However, the molecular mechanism of ZEB1-AS1 in DN pathogenesis remains elusive. An in vitro DN model was established by treating HK-2 cells with high glucose (HG). Quantitative polymerase chain reaction (qRT-PCR) was utilized to detect the expression levels of ZEB1-AS1, microRNA-216a-5p (miR-216a-5p), and bone morphogenetic protein 7 (BMP7). Western blot assay was used to evaluate the protein levels of BMP7, epithelial-to-mesenchymal transition (EMT)-related proteins, and fibrosis markers. Additionally, the interaction among ZEB1-AS1, miR-216a-5p, and BMP7 was predicted by MiRcode (http://www.mircode.org) and starBase 2.0 (omics_06102, omicX), and confirmed by luciferase reporter assay. ZEB1-AS1 and BMP7 were down-regulated, while miR-216a-5p was highly expressed in kidney tissues of DN patients. Consistently, HG treatment decreased the levels of ZEB1-AS1 and BMP7, whereas HG increased miR-216a-5p expression in HK-2 cells in a time-dependent manner. ZEB1-AS1 upregulation inhibited HG-induced EMT and fibrogenesis. Furthermore, ZEB1-AS1 directly targeted miR-216a-5p, and overexpression of miR-216a-5p restored the inhibitory effects of ZEB1-AS1 overexpression on EMT and fibrogenesis. BMP7 was negatively targeted by miR-216a-5p. In addition, ZEB1-AS1 suppressed HG-induced EMT and fibrogenesis by regulating miR-216a-5p and BMP-7. lncRNA ZEB1-AS1 inhibited high glucose-induced EMT and fibrogenesis via regulating miR-216a-5p/BMP7 axis in diabetic nephropathy, providing a potential target for DN therapy.


Subject(s)
Humans , Diabetic Nephropathies/metabolism , Bone Morphogenetic Protein 7/metabolism , Epithelial-Mesenchymal Transition/physiology , RNA, Long Noncoding/physiology , Zinc Finger E-box-Binding Homeobox 1/metabolism , Down-Regulation , Up-Regulation , Cells, Cultured , MicroRNAs/metabolism , Diabetic Nephropathies/genetics , Real-Time Polymerase Chain Reaction
5.
Biol. Res ; 53: 49, 2020. tab, graf
Article in English | LILACS | ID: biblio-1142416

ABSTRACT

BACKGROUND: Although OIP5-AS1 has been characterized as an oncogenic lncRNA in many types of cancer, its role and underlying mechanism in ovarian carcinoma (OC) remains unknown. This study aimed to investigate the role of OIP5-AS1 in OC. METHODS: OC tissues and non-tumor tissues (ovary tissues within 3 cm around tumors) were collected from 58 OC patients (age range 36 to 67 years old, mean age 51.4 ± 5.9 years old). The expression of OIP5-AS1 and snail in paired tissues were determined by RT-qPCR. The interaction between OIP5-AS1 and miR-34a was predicted by IntaRNA2.0 and confirmed by dual luciferase reporter assay. The effects of overexpression of OIP5-AS1 and miR-34a on the expression of snail were analyzed by RT-qPCR and Western blotting. Cell invasion and migration were analyzed by Transwell assay. RESULTS: We observed that the expression of OIP5-AS1 and snail was upregulated and positively correlated with each other in OC. RNA-RNA interaction analysis showed that OIP5-AS1 might sponge miR-34a. In OC cells, overexpression of OIP5-AS1 resulted in the upregulated expression of snail, while overexpression of miR-34a downregulated the expression of snail. In addition, overexpression of miR-34a reduced the effects of overexpression of OIP5-AS1 on the expression of snail. In cell invasion and migration assay, overexpression of OIP5-AS1 and snail resulted in increased OC cell invasion and migration, while overexpression of miR-34a decreased OC cell invasion and migration. Moreover, overexpression of miR-34a attenuated the effects of OIP5-AS1 overexpression on OC cell invasion and migration. CONCLUSIONS: Therefore, OIP5-AS1 may upregulate snail expression in OC by sponging miR-34a to promote OC cell invasion and migration.


Subject(s)
Humans , Female , Adult , Middle Aged , Aged , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/physiology , RNA, Long Noncoding/genetics , Gene Expression Regulation, Neoplastic , Cell Proliferation , Neoplasm Invasiveness
6.
Braz. j. med. biol. res ; 52(4): e7728, 2019. graf
Article in English | LILACS | ID: biblio-1001506

ABSTRACT

Pituitary adenoma is one of the most common tumors in the neuroendocrine system. This study investigated the effects of long non-coding RNAs (lncRNAs) highly up-regulated in liver cancer (HULC) on rat secreting pituitary adenoma GH3 cell viability, migration, invasion, apoptosis, and hormone secretion, as well as the underlying potential mechanisms. Cell transfection and qRT-PCR were used to change and measure the expression levels of HULC, miR-130b, and FOXM1. Cell viability, migration, invasion, and apoptosis were assessed using trypan blue staining assay, MTT assay, two-chamber transwell assay, Guava Nexin assay, and western blotting. The concentrations of prolactin (PRL) and growth hormone (GH) in culture supernatant of GH3 cells were assessed using ELISA. The targeting relationship between miR-130b and FOXM1 was verified using dual luciferase activity. Finally, the expression levels of key factors involved in PI3K/AKT/mTOR and JAK1/STAT3 pathways were evaluated using western blotting. We found that HULC was highly expressed in GH3 cells. Overexpression of HULC promoted GH3 cell viability, migration, invasion, PRL and GH secretion, as well as activated PI3K/AKT/mTOR and JAK1/STAT3 pathways. Knockdown of HULC had opposite effects and induced cell apoptosis. HULC negatively regulated the expression of miR-130b, and miR-130b participated in the effects of HULC on GH3 cells. FOXM1 was a target gene of miR-130b, which was involved in the regulation of GH3 cell viability, migration, invasion, and apoptosis, as well as PI3K/AKT/mTOR and JAK1/STAT3 pathways. In conclusion, HULC tumor-promoting roles in secreting pituitary adenoma might be via down-regulating miR-130b, up-regulating FOXM1, and activating PI3K/AKT/mTOR and JAK1/STAT3 pathways.


Subject(s)
Humans , Animals , Rats , Pituitary Neoplasms/pathology , Adenoma/pathology , RNA, Long Noncoding/physiology , Enzyme-Linked Immunosorbent Assay , Transfection , Adenoma/genetics , Adenoma/metabolism , Cell Movement/physiology , Cell Survival/physiology , Blotting, Western , Apoptosis/physiology , MicroRNAs/analysis , Cell Line, Tumor , STAT3 Transcription Factor/analysis , Janus Kinase 1/analysis , Janus Kinase 1/metabolism , Cell Migration Assays , Forkhead Box Protein M1/analysis , Forkhead Box Protein M1/metabolism , Luciferases
7.
Journal of Zhejiang University. Science. B ; (12): 739-749, 2018.
Article in English | WPRIM | ID: wpr-1010415

ABSTRACT

Antisense RNA molecule represents a unique type of DNA transcript that comprises 19-23 nucleotides and is complementary to mRNA. Antisense RNAs play the crucial role in regulating gene expression at multiple levels, such as at replication, transcription, and translation. In addition, artificial antisense RNAs can effectively regulate the expression of related genes in host cells. With the development of antisense RNA, investigating the functions of antisense RNAs has emerged as a hot research field. This review summarizes our current understanding of antisense RNAs, particularly of the formation of antisense RNAs and their mechanism of regulating the expression of their target genes. In addition, we detail the effects and applications of antisense RNAs in antivirus and anticancer treatments and in regulating the expression of related genes in plants and microorganisms. This review is intended to highlight the key role of antisense RNA in genetic research and guide new investigators to the study of antisense RNAs.


Subject(s)
Animals , Humans , Antineoplastic Agents/therapeutic use , Antiviral Agents/therapeutic use , Gene Expression Regulation , Genetic Research , MicroRNAs/physiology , RNA, Antisense/physiology , RNA, Long Noncoding/physiology , RNA, Small Interfering/physiology
8.
Journal of Zhejiang University. Science. B ; (12): 674-688, 2018.
Article in English | WPRIM | ID: wpr-1010406

ABSTRACT

OBJECTIVE@#In this study, we aimed to expand current knowledge of head and neck squamous cell carcinoma (HNSCC)-associated long noncoding RNAs (lncRNAs), and to discover potential lncRNA prognostic biomarkers for HNSCC based on next-generation RNA-seq.@*METHODS@#RNA-seq data of 546 samples from patients with HNSCC were downloaded from The Cancer Genome Atlas (TCGA), including 43 paired samples of tumor tissue and adjacent normal tissue. An integrated analysis incorporating differential expression, weighted gene co-expression networks, functional enrichment, clinical parameters, and survival analysis was conducted to discover HNSCC-associated lncRNAs. The function of CYTOR was verified by cell-based experiments. To further identify lncRNAs with prognostic significance, a multivariate Cox proportional hazard regression analysis was performed. The identified lncRNAs were validated with an independent cohort using clinical feature relevance analysis and multivariate Cox regression analysis.@*RESULTS@#We identified nine HNSCC-relevant lncRNAs likely to play pivotal roles in HNSCC onset and development. By functional enrichment analysis, we revealed that CYTOR might participate in the multistep pathological processes of cancer, such as ribosome biogenesis and maintenance of genomic stability. CYTOR was identified to be positively correlated with lymph node metastasis, and significantly negatively correlated with overall survival (OS) and disease free survival (DFS) of HNSCC patients. Moreover, CYTOR inhibited cell apoptosis following treatment with the chemotherapeutic drug diamminedichloroplatinum (DDP). HCG22, the most dramatically down-regulated lncRNA in tumor tissue, may function in epidermis differentiation. It was also significantly associated with several clinical features of patients with HNSCC, and positively correlated with patient survival. CYTOR and HCG22 maintained their prognostic values independent of several clinical features in multivariate Cox hazards analysis. Notably, validation either based on an independent HNSCC cohort or by laboratory experiments confirmed these findings.@*CONCLUSIONS@#Our transcriptomic analysis suggested that dysregulation of these HNSCC-associated lncRNAs might be involved in HNSCC oncogenesis and progression. Moreover, CYTOR and HCG22 were confirmed as two independent prognostic factors for HNSCC patient survival, providing new insights into the roles of these lncRNAs in HNSCC as well as clinical applications.


Subject(s)
Adult , Aged , Female , Humans , Male , Middle Aged , Cell Differentiation , Cells, Cultured , Gene Expression Profiling , Head and Neck Neoplasms/pathology , Proportional Hazards Models , RNA, Long Noncoding/physiology , Ribosomes/physiology , Squamous Cell Carcinoma of Head and Neck/pathology
9.
Biol. Res ; 51: 30, 2018. graf
Article in English | LILACS | ID: biblio-983935

ABSTRACT

BACKGROUND: Psoriasis is a complex, chronic inflammatory skin disease with substantial negative effects on patient quality of life. Long non-coding RNAs (lncRNAs) are able to be involved in multitudes of cellular processes in diverse human diseases. This study aimed to investigate the potential involvement of lncRNA MIR31HG in HaCaT keratinocytes proliferation. RESULTS: The study showed that MIR31HG was significantly elevated in the lesional psoriatic skin compared with normal individuals' skin. Knockdown of MIR31HG inhibited HaCaT keratinocytes proliferation. Flow cytometry analysis showed that siRNA-mediated MIR31HG depletion induced cell cycle arrest in the G2/M phase. In addition, MIR31HG expression was found to be dependent on NF-κB activation. CONCLUSIONS: NF-κB activation mediated MIR31HG upregulation plays an important role in the regulation of HaCaT keratinocytes proliferation. It could be a potential diagnostic biomarker and therapeutic target for psoriasis.


Subject(s)
Humans , Psoriasis/metabolism , Keratinocytes/metabolism , RNA, Long Noncoding/physiology , Psoriasis/genetics , Psoriasis/pathology , Biomarkers , Signal Transduction , Case-Control Studies , Keratinocytes/pathology , Up-Regulation , Gene Expression Regulation , Cell Proliferation
10.
Braz. j. med. biol. res ; 51(8): e7566, 2018. tab, graf
Article in English | LILACS | ID: biblio-951742

ABSTRACT

Protein coding sequences represent only 2% of the human genome. Recent advances have demonstrated that a significant portion of the genome is actively transcribed as non-coding RNA molecules. These non-coding RNAs are emerging as key players in the regulation of biological processes, and act as "fine-tuners" of gene expression. Neurological disorders are caused by a wide range of genetic mutations, epigenetic and environmental factors, and the exact pathophysiology of many of these conditions is still unknown. It is currently recognized that dysregulations in the expression of non-coding RNAs are present in many neurological disorders and may be relevant in the mechanisms leading to disease. In addition, circulating non-coding RNAs are emerging as potential biomarkers with great potential impact in clinical practice. In this review, we discuss mainly the role of microRNAs and long non-coding RNAs in several neurological disorders, such as epilepsy, Huntington disease, fragile X-associated ataxia, spinocerebellar ataxias, amyotrophic lateral sclerosis (ALS), and pain. In addition, we give information about the conditions where microRNAs have demonstrated to be potential biomarkers such as in epilepsy, pain, and ALS.


Subject(s)
Humans , MicroRNAs/physiology , RNA, Long Noncoding/physiology , Nervous System Diseases/genetics , Genetic Markers/physiology , Gene Expression Regulation , Neurodegenerative Diseases/genetics , Circulating MicroRNA , Neuromuscular Diseases/genetics
11.
Braz. j. med. biol. res ; 51(2): e6793, 2018. graf
Article in English | LILACS | ID: biblio-889023

ABSTRACT

Colon cancer is one of the most common digestive tumors. The present study aimed to explore the functional role, as well as the underlying mechanism of long non-coding RNA LINC00261 in colon cancer. Expression of LINC00261 was analyzed in colon cancer cell lines and human normal cell lines. Acquired resistance cell lines were then built and the acquired resistance efficiency was detected by evaluating cell viability. Thereafter, the effects of LINC00261 overexpression on cisplatin-resistant colon cancer cells were measured, as well as cell apoptosis, viability, migration, and invasion. Subsequently, we investigated the interaction of LINC00261 and β-catenin. The results showed that the LINC00261 gene was down-regulated in colon cancer cell lines and tissues, and in cisplatin-resistant cells. LINC00261 overexpression might relieve cisplatin resistance of colon cancer cells via promoting cell apoptosis, and inhibiting cell viability, migration, and invasion. Moreover, LINC00261 might down-regulate nuclear β-catenin through restraining β-catenin from cytoplasm into nuclei or it could also promote β-catenin degradation and inhibit activation of Wnt pathway. Finally, LINC00261 reduced cisplatin resistance of colon cancer in vivo and enhanced the anti-colon cancer effect of cisplatin through reducing tumor volume and weight.


Subject(s)
Humans , RNA, Long Noncoding/physiology , Antineoplastic Agents/pharmacology , Tetrazolium Salts , Thiazoles , Down-Regulation , Blotting, Western , Reproducibility of Results , Analysis of Variance , Apoptosis/drug effects , Apoptosis/physiology , Apoptosis Regulatory Proteins/drug effects , beta Catenin/physiology , Cell Migration Assays
12.
Braz. j. med. biol. res ; 51(1): e6536, 2018. tab, graf
Article in English | LILACS | ID: biblio-889004

ABSTRACT

Kidney stone disease is a major cause of chronic renal insufficiency. The role of long non-coding RNAs (lncRNAs) in calcium oxalate-induced kidney damage is unclear. Therefore, we aimed to explore the roles of lncRNAs in glyoxylate-exposed and healthy mouse kidneys using microarray technology and bioinformatics analyses. A total 376 mouse lncRNAs were differentially expressed between the two groups. Using BLAST, 15 lncRNA homologs, including AU015836 and CHCHD4P4, were identified in mice and humans. The AU015836 expression in mice exposed to glyoxylate and the CHCHD4P4 expression in human proximal tubular epithelial (HK-2) cells exposed to calcium oxalate monohydrate were analyzed, and both lncRNAs were found to be upregulated in response to calcium oxalate. To further evaluate the effects of CHCHD4P4 on the cell behavior, we constructed stable CHCHD4P4-overexpressing and CHCHD4P4-knockdown HK-2 cells. The results showed that CHCHD4P4 inhibited cell proliferation and promoted the epithelial-mesenchymal transition in kidney damage and fibrosis caused by calcium oxalate crystallization and deposition. The silencing of CHCHD4P4 reduced the kidney damage and fibrosis and may thus be a potential molecular target for the treatment of kidney stones.


Subject(s)
Humans , Animals , Rabbits , Kidney Calculi/genetics , Mitochondrial Membrane Transport Proteins/physiology , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , RNA, Long Noncoding/physiology , Fibrosis , Calcium Oxalate , Kidney Calculi/physiopathology , Up-Regulation , Cell Fractionation , Cell Line , Blotting, Western , Microarray Analysis , Cell Proliferation/physiology , Epithelial-Mesenchymal Transition/physiology , Real-Time Polymerase Chain Reaction
13.
Braz. j. med. biol. res ; 50(3): e6079, 2017. tab, graf
Article in English | LILACS | ID: biblio-839266

ABSTRACT

Several long non-coding RNA (lncRNA) might be correlated with the prognosis of colorectal cancer (CRC) and serve as a diagnostic and prognostic biomarker. However, the exact expression pattern of small nucleolar RNA host gene 12 (SNHG12) in colorectal cancer and its clinical significance remains unclear. The level of SNHG12 was detected by qRT-PCR in CRC tissues and CRC cells. MTT assay and colony formation assay were performed to examine the cell proliferation of CRC cells transfected with pcDNA-SNHG12 or si-SNHG12. Flow cytometry technology was used to detect cell cycle and cell apoptosis of CRC cells transfected with pcDNA-SNHG12 or si-SNHG12. The protein level of cell cycle progression-related molecules, including cyclin-dependent kinases (CDK4, CDK6), cyclin D1 (CCND1) and cell apoptosis-related molecule caspase 3 was detected by western blot. The effect of SNHG12 knockdown was examined in vivo. Increased levels of SNHG12 were observed in CRC tissues and in CRC cells. SNHG12 promoted the cell proliferation of CRC cells. In addition, SNHG12 overexpression boosted the cell cycle progression of SW480 cells transfected with pcDNA-SNHG12 and SNHG12 knockdown inhibited the cell cycle progression of HT29 cells transfected with si-SNHG12. SNHG12 also inhibited the cell apoptosis of CRC cells. We also found that SNHG12 increased the expression of cell cycle-related proteins and suppressed the expression of caspase 3. Our results suggest that SNHG12 promoted cell growth and inhibited cell apoptosis in CRC cells, indicating that SNHG12 might be a useful biomarker for colorectal cancer.


Subject(s)
Humans , Apoptosis , Cell Proliferation/physiology , Colorectal Neoplasms/metabolism , RNA, Long Noncoding/physiology , Blotting, Western , Flow Cytometry , Gene Expression Regulation, Neoplastic , Real-Time Polymerase Chain Reaction , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL