Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Clinics ; 66(4): 529-533, 2011. ilus, tab
Article in English | LILACS | ID: lil-588899

ABSTRACT

BACKGROUND: The molecular mechanisms involved in the genesis of the adrenocortical lesions seen in MEN1 syndrome (ACL-MEN1) remain poorly understood; loss of heterozygosity at 11q13 and somatic mutations of MEN1 are not usually found in these lesions. Thus, additional genes must be involved in MEN1 adrenocortical disorders. Overexpression of the glucose-dependent insulinotropic peptide receptor has been shown to promote adrenocortical tumorigenesis in a mice model and has also been associated with ACTH-independent Cushing syndrome in humans. However, to our knowledge, the status of glucose-dependent insulinotropic peptide receptor expression in adrenocortical lesions in MEN1 has not been previously investigated. OBJECTIVE: To evaluate glucose-dependent insulinotropic peptide receptor expression in adrenocortical hyperplasia associated with MEN1 syndrome. MATERIALS/METHODS: Three adrenocortical tissue samples were obtained from patients with previously known MEN1 germline mutations and in whom the presence of a second molecular event (a new MEN1 somatic mutation or an 11q13 loss of heterozygosity) had been excluded. The expression of the glucose-dependent insulinotropic peptide receptor was quantified by qPCR using the DDCT method, and b-actin was used as an endogenous control. RESULTS: The median of glucose-dependent insulinotropic peptide receptor expression in the adrenocortical lesions associated with MEN1 syndrome was 2.6-fold (range 1.2 to 4.8) higher than the normal adrenal controls (p = 0.02). CONCLUSION: The current study represents the first investigation of glucose-dependent insulinotropic peptide receptor expression in adrenocortical lesions without 11q13 loss of heterozygosity in MEN1 syndrome patients. Although we studied a limited number of cases of MEN1 adrenocortical lesions retrospectively, our preliminary data suggest an involvement of glucose-dependent insulinotropic peptide receptor overexpression in the etiology of adrenocortical hyperplasia. New prospective studies will be able to clarify the exact role of the glucose-dependent insulinotropic peptide receptor in the molecular pathogenesis of MEN1 adrenocortical lesions.


Subject(s)
Adult , Aged , Female , Humans , Male , Middle Aged , Adrenal Gland Neoplasms/metabolism , Adrenal Glands/pathology , /genetics , Loss of Heterozygosity/genetics , Multiple Endocrine Neoplasia Type 1/metabolism , Receptors, Gastrointestinal Hormone/metabolism , Adrenal Gland Neoplasms/genetics , Adrenal Glands/metabolism , Case-Control Studies , Hyperplasia/metabolism , Hyperplasia/pathology , Multiple Endocrine Neoplasia Type 1/genetics , Receptors, Gastrointestinal Hormone/genetics , Statistics, Nonparametric
2.
Arq. bras. endocrinol. metab ; 53(3): 326-331, Apr. 2009. graf, tab
Article in English | LILACS | ID: lil-517675

ABSTRACT

OBJECTIVE: To analyze the aberrant expression of the GIPR and LHCGR in different forms of adrenocortical hyperplasia: ACTH-independent macronodular adrenal hyperplasia (AIMAH), primary pigmented nodular adrenocortical disease (PPNAD) and diffuse adrenal hyperplasia secondary to Cushing's disease (DAHCD). METHODS: We quantified GIPR and LHCGR expressions using real time PCR in 20 patients with adrenocortical hyperplasia (seven with AIMAH, five with PPNAD, and eight with DAHCD). Normal adrenals tissues were used as control and the relative expression was compared with β-actin. RESULTS: GIPR and LHCGR expressions were demonstrated in all tissues studied. Median GIPR and LHCGR mRNA levels were 1.6; 0.4; 0.5 and 1.3; 0.9; 1.0 in adrenocortical tissues from AIMAH, PPNAD and DAHCD respectively. There were no differences between GIPR and LHCGR expressions in all tissues studied. CONCLUSIONS: GIPR and LHCGR overexpression were not identified in the studied cases, thus suggesting that this molecular mechanism is not involved in adrenocortical hyperplasia in our patients.


OBJETIVO: Analisar a expressão aberrante do GIPR e do LHCGR em diferentes formas de hiperplasias adrenocorticais: hiperplasia adrenal macronodular independente de ACTH (AIMAH), doença adrenocortical nodular pigmentada primária (PPNAD) e hiperplasia adrenal difusa secundária à doença de Cushing (DAHCD). MÉTODOS: Quantificou-se por PCR em tempo real a expressão desses receptores em 20 pacientes: sete com AIMAH, cinco com PPNAD e oito com DAHCD. Adrenais normais foram utilizadas como controle e a expressão relativa desses receptores foi comparada à expressão da β-actina. RESULTADOS: A expressão desses receptores foi demonstrada em todos os tecidos estudados. A mediana da expressão do GIPR e do LHCGR foi de 1,6; 0,4; 0,5 e de 1,3; 0,9; 1,0 nos tecidos dos pacientes com AIMAH, PPNAD e DAHCD, respectivamente. Não houve diferença significativa na expressão desses receptores nos tecidos estudados. CONCLUSÕES: Hiperexpressão do GIPR e do LHCGR não foi observada, sugerindo que esse mecanismo não está envolvido na patogênese molecular da hiperplasia adrenal nesses pacientes.


Subject(s)
Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Adrenal Cortex Diseases/metabolism , Adrenal Glands/pathology , Pituitary ACTH Hypersecretion/metabolism , Receptors, Gastrointestinal Hormone/metabolism , Receptors, LH/metabolism , Actins/metabolism , Adrenal Cortex Diseases/genetics , Adrenal Glands/metabolism , Hyperplasia/metabolism , Polymerase Chain Reaction , Pituitary ACTH Hypersecretion/genetics , Reverse Transcriptase Polymerase Chain Reaction , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Gastrointestinal Hormone/genetics , Receptors, LH/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL