Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Journal of Zhejiang University. Science. B ; (12): 699-712, 2019.
Article in English | WPRIM | ID: wpr-1010478

ABSTRACT

The mechanistic target of rapamycin complex 1 (mTORC1) controls cell growth and metabolism in response to various environmental inputs, especially amino acids. In fact, the activity of mTORC1 is highly sensitive to changes in amino acid levels. Over past decades, a variety of proteins have been identified as participating in the mTORC1 pathway regulated by amino acids. Classically, the Rag guanosine triphosphatases (GTPases), which reside on the lysosome, transmit amino acid availability to the mTORC1 pathway and recruit mTORC1 to the lysosome upon amino acid sufficiency. Recently, several sensors of leucine, arginine, and S-adenosylmethionine for the amino acid-stimulated mTORC1 pathway have been coming to light. Characterization of these sensors is requisite for understanding how cells adjust amino acid sensing pathways to their different needs. In this review, we summarize recent advances in amino acid sensing mechanisms that regulate mTORC1 activity and highlight these identified sensors that accurately transmit specific amino acid signals to the mTORC1 pathway.


Subject(s)
Animals , Humans , Amino Acids/chemistry , Arginine/chemistry , Cell Membrane/metabolism , GTP Phosphohydrolases/metabolism , Gene Expression Regulation , Golgi Apparatus/metabolism , Leucine/chemistry , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Methionine/chemistry , S-Adenosylmethionine/chemistry , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL