Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Indian J Physiol Pharmacol ; 1996 Jan; 40(1): 15-22
Article in English | IMSEAR | ID: sea-106685

ABSTRACT

The experimental animals were implanted with two bipolar electodes, one in the lateral hypothalamus including medial forebrain bundle (LH-MFB) and other in ipsilateral ventral tegmental area-substantia nigra (VTA-SN) and were trained to press a pedal for self-stimulation. This provided the scope to compare directly the effect of a given dose of a drug on the two reward regions in the same animal in the same testing situation. The current intensity was set to produce intracranial self-stimulation (ICSS) response rates of 50% less than the maximal shaping response rates for the respective animals (M60). Following systemic (intraperitoneal) administration of apomorphine (a dopamine receptor D1/D2 mixed agonist), SKF 38393 (D1 > D3 > D2 agonist), LY 17155 or quinpirole (D3 > D2 and D1) agonist), haloperidol (a DA-D2 antagonist), and clonidine (noradrenaline receptor alpha 2 agonist), the ICSS response rates evoked from LH-MFB and VTA-SN were compared with vehicle or saline-treated animals on the basis of dose-response functions. A dose-dependent inhibitory effect at M50 was observed with apomorphine (0.01-1.00 mg/kg) and haloperidol (0.05-0.30 mg/kg) for both the sites of stimulation. These doses of haloperidol did not produce any motor deficits like catalepsy and muscular rigidity. The dose-response and time-effect functions of SKF 38393 and LY 171555 at M50 showed the facilitation and suppression of ICSS of VTA-SN and LH-MFB respectively. Clonidine (0.05-0.25 mg/kg) also produced inhibitory effect on ICSS rates, but this suppression was of different magnitude with respect to the site of stimulation. These doses of clonidine were in the range that did not prevent active pedal pressing responses. ED50 (the dose required to reduce the ICSS response rate 50% of the rate after administration of vehicle) for LY 171555 was 0.8 and 4.4 mg/kg for the ICSS of VTA-SN and LH-MFB respectively and thus statistically different ED50 for apomorphine was 0.27 and 0.36 mg/kg; and for haloperidol was 0.75 and 0.90 mg/kg for LH-MFB and VTA-SN respectively and thus not different significantly. ED50 for clonidine was 0.25 and 0.08 mg/kg for VTA-SN and LH-MFB respectively and thus statistically different. The two-way analysis of variance (ANOVAR) of interaction of dose-response function of alpha 2 agonist with respect to LH-MFB and VTA-SN showed significant independence in their suppressive effects.


Subject(s)
2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology , Adrenergic alpha-Agonists/pharmacology , Adrenergic alpha-Antagonists/pharmacology , Animals , Apomorphine/pharmacology , Clonidine/pharmacology , Dopamine Agonists/pharmacology , Dopamine Antagonists/pharmacology , Dose-Response Relationship, Drug , Electrodes, Implanted , Haloperidol/pharmacology , Hypothalamic Area, Lateral/drug effects , Male , Medial Forebrain Bundle/drug effects , Quinpirole/pharmacology , Rats , Rats, Wistar , Self Stimulation/drug effects , Tegmentum Mesencephali/drug effects
2.
Indian J Physiol Pharmacol ; 1989 Jul-Sep; 33(3): 179-85
Article in English | IMSEAR | ID: sea-108770

ABSTRACT

Experiments were carried on in the Wistar rats having self-stimulation (SS) electrodes implanted chronically in substantia nigra-ventral tegmental area (SN-VTA) to examine whether modulations of GABAergic, serotonergic, histaminergic, dopaminergic, and glucocorticoid neuronal receptor functions will affect or not the brain reward system and the SS behaviour. The modulators are the wellknown drugs: diazepam which is a facilitator of some of the GABA receptors, and used clinically for its tranquilizing, anxiolytic, sedative-hypnotic and anti-convulsant properties; sodium valproate which is known to enhance the GABA synapse function, and used clinically for its anti-convulsant property; haloperidol which is a dopaminergic receptor (D2) blocker, and clinically used for its anti-psychotic property; cyproheptadine which is both anti-histaminic and anti-serotonergic (blocks 5-HT2 receptor), used clinically for its antihistaminic and other beneficial properties; and hydrocortisone which is the stress-resisting glucocorticoid having direct effects on both brain and body cells, used clinically for the wide-ranging glucocorticoid therapeutic effects. The results revealed that systemic administration of these drugs, except haloperidol, caused no significant influence on the SS behaviour, thereby indicating that these nondopaminergic drugs have no effect on brain-reward system and also these categories of synaptic actions are not likely to be involved in the primary organization of the mechanisms of the brain-reward system.


Subject(s)
Animals , Cyproheptadine/pharmacology , Diazepam/pharmacology , Electrodes, Implanted , Haloperidol/pharmacology , Hydrocortisone/pharmacology , Rats , Rats, Inbred Strains , Reward , Self Stimulation/drug effects , Substantia Nigra/physiology , Tegmentum Mesencephali/physiology , Valproic Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL