Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Chinese Journal of Biotechnology ; (12): 4563-4579, 2023.
Article in Chinese | WPRIM | ID: wpr-1008042

ABSTRACT

In order to investigate the molecular mechanism of silk/threonine protein kinase (STK)-mediated blue light response in the algal Chlamydomonas reinhardtii, phenotype identification and transcriptome analysis were conducted for C. reinhardtii STK mutant strain crstk11 (with an AphvIII box reverse insertion in stk11 gene coding region) under blue light stress. Phenotypic examination showed that under normal light (white light), there was a slight difference in growth and pigment contents between the wild-type strain CC5325 and the mutant strain crstk11. Blue light inhibited the growth and chlorophyll synthesis in crstk11 cells, but significantly promoted the accumulation of carotenoids in crstk11. Transcriptome analysis showed that 860 differential expression genes (DEG) (559 up-regulated and 301 down-regulated) were detected in mutant (STK4) vs. wild type (WT4) upon treatment under high intensity blue light for 4 days. After being treated under high intensity blue light for 8 days, a total of 1 088 DEGs (468 upregulated and 620 downregulated) were obtained in STK8 vs. WT8. KEGG enrichment analysis revealed that compared to CC5325, the crstk11 blue light responsive genes were mainly involved in catalytic activity of intracellular photosynthesis, carbon metabolism, and pigment synthesis. Among them, upregulated genes included psaA, psaB, and psaC, psbA, psbB, psbC, psbD, psbH, and L, petA, petB, and petD, as well as genes encoding ATP synthase α, β and c subunits. Downregulated genes included petF and petJ. The present study uncovered that the protein kinase CrSTK11 of C. reinhardtii may participate in the blue light response of algal cells by mediating photosynthesis as well as pigment and carbon metabolism, providing new knowledge for in-depth analysis of the mechanism of light stress resistance in the algae.


Subject(s)
Chlamydomonas reinhardtii/genetics , Photosynthesis/genetics , Plants/metabolism , Protein Kinases , Threonine/metabolism , Carbon/metabolism , Serine/metabolism
2.
Chinese Journal of Biotechnology ; (12): 4567-4586, 2022.
Article in Chinese | WPRIM | ID: wpr-970332

ABSTRACT

l-cysteine is an important sulfur-containing α-amino acid. It exhibits multiple physiological functions with diverse applications in pharmaceutical cosmetics and food industry. Here, a strategy of coordinated gene expression between carbon and sulfur modules in Escherichia coli was proposed and conducted for the production of l-cysteine. Initially, the titer of l-cysteine was improved to (0.38±0.02) g/L from zero by enhancing the biosynthesis of l-serine module (serAf, serB and serCCg) and overexpression of CysB. Then, promotion of l-cysteine transporter, increased assimilation of sulfur, reduction or deletion of l-cysteine and l-serine degradation pathway and enhanced expression of cysEf (encoding serine acetyltransferase) and cysBSt (encoding transcriptional dual regulator CysB) were achieved, resulting in an improved l-cysteine titer (3.82±0.01) g/L. Subsequently, expressions of cysM, nrdH, cysK and cysIJ genes that were involved in sulfur module were regulated synergistically with carbon module combined with utilization of sulfate and thiosulfate, resulting in a strain producing (4.17±0.07) g/L l-cysteine in flask shake and (11.94±0.1) g/L l-cysteine in 2 L bioreactor. Our results indicated that efficient biosynthesis of l-cysteine could be achieved by a proportional supply of sulfur and carbon in vivo. This study would facilitate the commercial bioproduction of l-cysteine.


Subject(s)
Escherichia coli/metabolism , Cysteine/metabolism , Bioreactors , Sulfur/metabolism , Serine/metabolism
3.
J. appl. oral sci ; 23(2): 135-144, Mar-Apr/2015. tab, graf
Article in English | LILACS, BBO | ID: lil-746539

ABSTRACT

The mandible condylar process cartilage (CP) of Wistar rats is a secondary cartilage and acts as a mandibular growth site. This phenomenon depends on adequate proteins intake and hormone actions, including insulin. Objectives The present study evaluated the morphological aspects and the expression of the insulin receptor (IR) in the cartilage of the condylar process (CP) of rats subjected to protein undernourishment. Material and Methods The nourished group received a 20% casein diet, while the undernourished group (U) received a 5% casein diet. The re-nourished groups, R and RR, were used to assess the effects of re-nutrition during puberty and adulthood, respectively. CPs were processed and stained with picro-sirius red, safranin-O and azocarmine. Scanning electron microscopy and immunohistochemistry were also performed. Results The area of the CP cartilage and the number of cells in the chondroblastic layer decreased in the U group, as did the thickness of the CP layer in the joint and hypertrophic layer. Renourishment during the pubertal stage, but not during the adult phase, restored these parameters. The cell number was restored when re-nutrition occurred in the pubertal stage, but not in the adult phase. The extracellular matrix also decreased in the U group, but was restored by re-nutrition during the pubertal stage and further increased in the adult phase. IR expression was observed in all CPs, being higher in the chondroblastic and hypertrophic cartilage layers. The lowest expression was found in the U and RR groups. Conclusions Protein malnutrition altered the cellularity, the area, and the fibrous cartilage complex, as well as the expression of the IRs. .


Subject(s)
Animals , Mice , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Cyclooxygenase 1/metabolism , /metabolism , Cyclooxygenase Inhibitors/metabolism , Piroxicam/analogs & derivatives , Thiazines/metabolism , Thiazoles/metabolism , Amino Acid Substitution , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Arginine/chemistry , Arginine/genetics , Arginine/metabolism , Binding Sites , Catalytic Domain , Cyclooxygenase 1/chemistry , Cyclooxygenase 1/genetics , /chemistry , /genetics , Cyclooxygenase Inhibitors/chemistry , Hydrogen Bonding , Leucine/chemistry , Leucine/genetics , Leucine/metabolism , Mutation , Piroxicam/chemistry , Piroxicam/metabolism , Protein Structure, Secondary , Serine/chemistry , Serine/genetics , Serine/metabolism , Thiazines/chemistry , Thiazoles/chemistry , Tyrosine/chemistry , Tyrosine/genetics , Tyrosine/metabolism , Water
4.
Experimental & Molecular Medicine ; : 546-552, 2006.
Article in English | WPRIM | ID: wpr-69443

ABSTRACT

I kappa B kinase beta (IKK beta) subunit of IKK complex is essential for the activation of NF-kappa B in response to various proinflammatory signals. Cys-179 in the activation loop of IKK beta is known to be the target site for IKK inhibitors such as cyclopentenone prostaglandins, arsenite, and antirheumatic gold compounds. Here we show that a mutant IKK beta in which Cys-179 is substituted with alanine had decreased activity when it was expressed in HEK-293 cells, and TNF stimulation did not restore the activity. Phosphorylation of activation loop serines (Ser-177 and Ser-181) which is required for IKK beta activation was reduced in the IKK beta (C179A) mutant. The activity of IKK beta (C179A) was partially recovered when its phosphorylation was enforced by coexpression with mitogen-activated protein kinase kinase kinases (MAPKKK) such as NF-kappa B inducing kinase (NIK) and MAPK/extracellular signal-regulated kinase kinase kinase 1(MEKK1) or when the serine residues were replaced with phospho-mimetic glutamate. The IKK beta (C179A) mutant was normal in dimer formation, while its activity abnormally responded to the change in the concentration of substrate ATP in reaction mixture. Our results suggest that Cys-179 of IKK beta plays a critical role in enzyme activation by promoting phosphorylation of activation-loop serines and interaction with ATP.


Subject(s)
Humans , Transfection , Serine/metabolism , Protein Binding , Phosphorylation , Mutant Proteins/chemistry , MAP Kinase Kinase Kinases/metabolism , I-kappa B Kinase/chemistry , HeLa Cells , Enzyme Activation/physiology , Cysteine/physiology , Cells, Cultured , Catalytic Domain , Amino Acid Substitution/physiology , Adenosine Triphosphate/metabolism
5.
Experimental & Molecular Medicine ; : 353-364, 2005.
Article in English | WPRIM | ID: wpr-177636

ABSTRACT

Hypoxia, a common consequence of solid tumor growth in breast cancer or other cancers, serves to propagate a cascade of molecular pathways which include angiogenesis, glycolysis, and various cellcycle control proteins. As we have shown previously, hypoxia activates STAT5 (signal transducer and activator of transcription 5) and increases its binding activity to the GAS element in mammary epithelial cells. In this study we attempted to elucidate the mechanism by which cyclin D1 is regulated by the STAT5 protein under hypoxic conditions. Our data demonstrate that hypoxia (2% O2) or desferrioxamine (DFO) induces tyrosine and serine phosphorylation of STAT5 in human breast cancer cells (MCF-7) and mammary epithelial cells (HC11). Imunoprecipitation and subsequent Western analysis showed that Jak2 leads to the tyrosine phosphorylation and activation of STAT5a or STAT5b under hypoxic conditions. Using a transfected COS-7 cell model system, we demonstrate that the activity of a cyclin D1 promoter-luciferase construct increased under hypoxic conditions or DFO treatment. The activity of the STAT5b/cyclin D1 promoter increased significantly by 12 h of hypoxia, whereas the activity of the STAT5a/cyclin D1 promoter was unaffected under hypoxic conditions. These increases in promoter activity are predominantly mediated by the Jak2/ STAT5b signaling pathway. We have shown by EMSA that hypoxia induces STAT5 to bind to the cyclin D1 promoter (GAS-1) in MCF-7 and HC11 cells. These data suggest that STAT5b may mediate the transcriptional activation of cyclin D1 after hypoxic stimulation.


Subject(s)
Animals , Female , Humans , Anaerobiosis/genetics , Breast Neoplasms/genetics , COS Cells , Cell Hypoxia/genetics , Chlorocebus aethiops , Cyclin D1/genetics , Deferoxamine/pharmacology , Gene Expression Regulation, Neoplastic , Phosphorylation/drug effects , Promoter Regions, Genetic , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Serine/metabolism , Tumor Cells, Cultured , Tyrosine/metabolism
6.
Journal of Korean Medical Science ; : 255-261, 2003.
Article in English | WPRIM | ID: wpr-210104

ABSTRACT

Spinal gabapentin has been known to show the antinociceptive effect. Although several assumptions have been suggested, mechanisms of action of gabapentin have not been clearly established. The present study was undertaken to examine the action mechanisms of gabapentin at the spinal level. Male SD rats were prepared for intrathecal catheterization. The effect of gabapentin was assessed in the formalin test. After pretreatment with many classes of drugs, changes of effect of gabapentin were examined. General behaviors were also observed. Intrathecal gabapentin produced a suppression of the phase 2 flinching, but not phase 1 in the formalin test. The antinociceptive action of intrathecal gabapentin was reversed by intrathecal NMDA, AMPA, D-serine, CGS 15943, atropine, and naloxone. No antagonism was seen following administration of bicuculline, saclofen, prazosin, yohimbine, mecamylamine, L-leucine, dihydroergocristine, or thapsigargin. Taken together, intrathecal gabapentin attenuated only the facilitated state. At the spinal level, NMDA receptor, AMPA receptor, nonstrychnine site of NMDA receptor, adenosine receptor, muscarinic receptor, and opioid receptor may be involved in the antinociception of gabapentin, but GABA receptor, L-amino acid transporter, adrenergic receptor, nicotinic receptor, serotonin receptor, or calcium may not be involved.


Subject(s)
Animals , Male , Rats , Acetates/administration & dosage , Acetates/metabolism , Acetates/pharmacology , Adrenergic Antagonists/metabolism , Adrenergic alpha-Antagonists/metabolism , Analgesics/administration & dosage , Analgesics/metabolism , Analgesics/pharmacology , Atropine/metabolism , Dihydroergocristine/metabolism , Enzyme Inhibitors/metabolism , Excitatory Amino Acid Agonists/metabolism , GABA Antagonists/metabolism , Injections, Spinal , Leucine/metabolism , Mecamylamine/metabolism , Muscarinic Antagonists/metabolism , N-Methylaspartate/metabolism , Naloxone/metabolism , Narcotic Antagonists/metabolism , Nicotinic Antagonists/metabolism , Pain Measurement , Quinazolines/metabolism , Rats, Sprague-Dawley , Serine/metabolism , Spinal Cord/drug effects , Thapsigargin/metabolism , Triazoles/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism
7.
Journal of Veterinary Science ; : 185-191, 2002.
Article in English | WPRIM | ID: wpr-22474

ABSTRACT

Using site-directed mutagenesis technique, I have replaced serine 285 and serine 292 with the alanine, and assessed the binding of agonist and signaling such as the inhibition of adenylyl cyclase activity.I have found that serine 292 has an important role in the signal transduction of cannabinoid agonists, HU-210 and CP55940, but not in that of aminoalkylindoles derivatives WIN55,212-2. All mutants express well in protein level determined by western blot using monoclonal antibody HA 11 as compared with the wild type receptor.Interestingly, binding affinity of S285A and S292A mutants with classical cannabinoid agonist HU-243 was somewhat decreased. In signaling assay, the inhibition of adenylyl cyclase by HU-210, CP55940 and WIN55, 212-2 is the same order in both wild type receptor and S285A mutant receptor. However, S292A have been shown that the inhibition curves of adenylyl cyclase activity moved to the right by HU-210 and CP55940, but those of adenylyl cyclase activity did not by aminoalkylindole WIN55,212-2, which is indicating that this residue is closely related to the binding site with HU-210 and CP55940. In addition, serine 292 might take more important role in CB2 receptor and G-protein signaling than serine 285.


Subject(s)
Animals , Adenylyl Cyclases/metabolism , Binding, Competitive , Blotting, Western , COS Cells , Cannabinoids/metabolism , Chlorocebus aethiops , Cyclohexanols/metabolism , Excitatory Amino Acid Antagonists/metabolism , Mutagenesis, Site-Directed , Protein Conformation , Protein Structure, Tertiary , Receptors, Cannabinoid , Receptors, Drug/genetics , Serine/metabolism , Signal Transduction/physiology , Dronabinol , Transfection
8.
Indian J Pathol Microbiol ; 1997 Jan; 40(1): 55-8
Article in English | IMSEAR | ID: sea-73632

ABSTRACT

Thirty two known strains of Candida species were used for evaluation of glucose, serine, ornithine, methionine, GSOM medium and its comparison with Lee's medium for the production of yeast and mycelial phase at different temperatures and on prolonged incubation. No mycelial form was observed when various Candida species in GSOM and Lee's medium were incubated at 25 degrees C up to 72 hours. Percentage of mycelial forming cells of Candida species were more in GSOM medium than Lee's medium in 48 hours at 37 degrees C. Among various species of Candida, albicans and C. parapsilosis showed maximum mycelium formation. GSOM medium can be used for growing Candida species particularly C. albicans in mycelial phase.


Subject(s)
Candida/growth & development , Culture Media/metabolism , Glucose/metabolism , Methionine/metabolism , Ornithine/metabolism , Serine/metabolism
9.
Braz. j. med. biol. res ; 29(5): 599-604, May 1996. graf
Article in English | LILACS | ID: lil-182542

ABSTRACT

The major spontaneously active serine/threonine (Ser/Thr) protein phosphatase activities in N. crassa wild type (FGSC 424) were type 1 (PP1), type-2A (PP2A) and type-2C (PP2C). PP1 and PP2C predominantly dephosphorylated phosphorylase a and casein, respectively. PP2A acted on both substrates, but was two-fold more active against casein. PPI activity was inhibited by protamine, heparin, okadaic acid (IC50 50 nM) and mammalian inhibitor- 1 (lC50 2 nM). On the other hand, PP2A activity was inhibited by much lower concentrations of okadaic acid (IC50 0.2 nM) and also by protamine, but not by heparin or inhibitor-l. About 80 per cent of total PP1 activity was associated with the particulate fraction and could be partially extracted with 0.5 M NaCl. Seventy and ninety percent of PP2A and PP2C activities, respectively, were found in the soluble fraction. In addition we have partially purified an acid and thermostable PP1 inhibitor which effectively inhibits both N. crassa and mammalian PP1.


Subject(s)
Animals , Rats , Ethers, Cyclic/pharmacology , Phosphoprotein Phosphatases/antagonists & inhibitors , Neurospora crassa/enzymology , Serine/metabolism , Threonine/metabolism , Chromatography , Phosphoprotein Phosphatases/metabolism , Substrate Specificity
10.
Acta bioquím. clín. latinoam ; 22(2): 239-48, jun. 1988. tab, ilus
Article in Spanish | LILACS | ID: lil-68995

ABSTRACT

La composición y estructura de los extremos terminales no reductores portadores de los determinantes antigénicos en las cadenas de oligosacáridos de las glicoproteínas del plasma seminal humano, han permitido deducir que estos componentes son fragmentos producidos por la degradación proteolítica endógena de las mucinas. Dado que las cadenas de hidratos de carbono unidas O-glicosídicamente a la serina y la treonina de la cadena peptídica dan lugar a una reacción de beta-eliminación en condiciones alcalinas suaves, hicimos uso del tratamiento alcalino para demostrar la presencia de enlaces lábiles al álcali en las muestras de plasma seminal humano y algunas fracciones glicoproteicas aisladas a partir del mismo. El análisis de los hidratos de carbono que se liberan durante ell tratamiento han permitido obtener información sobre la composición y estructura de este tipo de unidades de oligosacarídos. Hemos identificado al monosacárido involucrado en el enlace O-glicosídico a serina y treonina y hemos podido caracterizar, a través de la reacción de beta-eliminación en condiciones reductoras y no reductoras, las unidades de monosacáridos del extremo terminal reductor


Subject(s)
Humans , Carbohydrate Conformation , Glycoproteins/metabolism , Semen/metabolism , Alanine/metabolism , Mannose/metabolism , Serine/metabolism , Threonine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL