Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Dental press j. orthod. (Impr.) ; 22(2): 55-60, Mar.-Apr. 2017. tab, graf
Article in English | LILACS | ID: biblio-840225

ABSTRACT

ABSTRACT OBJECTIVE: The aim of this study was to assess in vitro the influence of the CO2 laser and of the type of ceramic bracket on the shear bond strength (SBS) to enamel. METHODS: A total of 60 enamel test surfaces were obtained from bovine incisors and randomly assigned to two groups, according to the ceramic bracket used: Allure (A); Transcend (T). Each group was divided into 2 subgroups (n = 15): L, laser (10W, 3s); C, no laser, or control. Twenty-four hours after the bonding protocol using Transbond XT, SBS was tested at a crosshead speed of 0.5 mm/min in a universal testing machine. After debonding, the Adhesive Remnant Index (ARI) was evaluated at 10 x magnification and compared among the groups. Data were analyzed by one-way ANOVA, Tukey’s, Mann-Whitney’s and Kruskal-Wallis tests (α = 0.05). RESULTS: Mean SBS in MPa were: AL = 0.88 ± 0.84; AC = 12.22 ± 3.45; TL = 12.10 ± 5.11; TC = 17.71 ± 6.16. ARI analysis showed that 73% of the specimens presented the entire adhesive remaining on the tooth surfaces (score 3). TC group presented significantly higher SBS than the other groups. The lased specimens showed significantly lower bond strength than the non-lased groups for both tested brackets. CONCLUSION: CO2 laser irradiation decreased SBS values of the polycrystalline ceramic brackets, mainly Allure.


RESUMO OBJETIVO: o objetivo deste estudo foi avaliar in vitro a influência do laser de CO2 sobre a resistência ao cisalhamento da colagem (RCC) no esmalte dentário, usando diferentes tipos de braquetes cerâmicos. MÉTODOS: no total, 60 superfícies de esmalte de incisivos bovinos foram obtidas e aleatoriamente divididas em dois grupos, de acordo com o braquete cerâmico utilizado: Allure (A) e Transcend (T). Cada grupo foi dividido em dois subgrupos (n = 15): L, laser (10W, 3s); C, sem laser, ou controle. Vinte e quatro horas após a colagem dos braquetes com o sistema Transbond XT, foi realizado o teste de resistência ao cisalhamento, com velocidade de 0,5 mm/min, em máquina universal de ensaios mecânicos. Após a descolagem, o Índice de Remanescente de Adesivo (IRA) foi avaliado com aumento de 10X e comparado entre os grupos. Os dados foram analisados pelo ANOVA one-way, testes de Tukey’s, Mann-Whitney’s e Kruskal-Wallis (α = 0,05). RESULTADOS: as médias da RCC em MPa foram: AL = 0,88 ± 0,84; AC = 12,22 ± 3,45; TL = 12,10 ± 5,11; TC = 17,71 ± 6,16. A análise do IRA mostrou que 73% dos corpos de prova apresentaram todo o compósito remanescente aderido à superfície do esmalte (escore 3). O grupo TC apresentou valor significativamente maior de RCC do que os outros grupos. Os corpos de prova dos grupos com laser obtiveram valores adesivos significativamente menores do que os corpos de prova dos grupos sem laser, com ambos os tipos de braquetes. CONCLUSÃO: a irradiação com laser de CO2 diminuiu os valores de RCC dos braquetes policristalinos testados, principalmente do Allure.


Subject(s)
Animals , Ceramics/radiation effects , Dental Bonding , Orthodontic Brackets , Dental Cements/radiation effects , Shear Strength/radiation effects , Lasers, Gas/adverse effects , Stress, Mechanical , Acid Etching, Dental , Materials Testing , Cattle , Resin Cements/radiation effects , Dental Enamel , Dental Stress Analysis , Incisor
2.
Braz. oral res ; 24(1): 64-69, Jan.-Mar. 2010. tab
Article in English | LILACS | ID: lil-541515

ABSTRACT

The aim of this in vitro study was to compare the photoactivation effects of QTH (Quartz-Tungsten-Halogen) and LED (Light-Emitting Diode) on the SBS (Shear Bond Strength) of orthodontic brackets at different debond times. Seventy-two bovine lower incisors were randomly divided into two groups according to the photoactivation system used (QTH or LED). The enamel surfaces were conditioned with Transbond self-etching primer, and APC (Adhesive Pre-Coated) brackets were used in all specimens. Group I was cured with QTH for 20 s and Group II with LED for 10 s. Both groups were subdivided according to the different experimental times after bonding (immediately, 24 h and 7 days). The specimens were tested for SBS and the enamel surfaces were analyzed according to the Adhesive Remnant Index (ARI). The statistical analysis included the Tukey's test to evaluate the main effects of photoactivation and debond time on SBS. The Chi-square test was used to compare the ARI values found for each group, and no statistically significant difference was observed. The debond time of 7 days for QTH photoactivation showed statistically greater values of SBS when compared to the immediate and 24 h periods. There was no statistically significant difference between the QTH and LED groups immediately and after the 24 h period. In conclusion, bonding orthodontic brackets with LED photoactivation for 10 s is suggested because it requires a reduced clinical chair time.


Subject(s)
Animals , Cattle , Curing Lights, Dental , Light-Curing of Dental Adhesives/methods , Orthodontic Brackets , Shear Strength/radiation effects , Acid Etching, Dental , Dental Debonding , Materials Testing , Resin Cements/radiation effects , Surface Properties/radiation effects , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL