Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Biol. Res ; 51: 58, 2018. graf
Article in English | LILACS | ID: biblio-1011402

ABSTRACT

BACKGROUND: Studies have demonstrated that transforming growth factor beta-1 (TGF-ß1) exhibits oncogenic activity in different types of cancer, including ovarian cancer (OC). However, its regulatory mechanism in OC and whether TGF-ß1 is involved in chemosensitivity regulation remains unclear. Thus, the aim of this study was to investigate the role of TGF-ß1 in OC. METHODS: The OC cell line SKOV3 was employed, and TGF-ß1 overexpression or knockdown vectors were constructed. The cell proliferation of SKOV3 was evaluated with the cell counting kit (CCK8) kit after treatment with different concentrations of cis-platinum. Western blot and protein immunoprecipitation were employed to detect changes in BRCA1 and Smad3 expression and their interactions. Tumor growth in nude mice was evaluated. RESULTS: The results showed that TGF-ß1 knockdown increased chemosensitivity by promoting BRCA1 expression and Smad3 phosphorylation. In vivo studies showed that TGF-ß1 knockdown significantly inhibited the growth of tumors, also by upregulating BRCA1 expression and Smad3 phosphorylation. CONCLUSION: Taken together, our results suggest that TGF-ß1 knockdown inhibits tumor growth and increases chemosensitivity by promotion of BRCA1/Smad3 signaling.


Subject(s)
Humans , Animals , Male , Female , Ovarian Neoplasms/metabolism , Down-Regulation/physiology , Genes, BRCA1/physiology , Smad3 Protein/physiology , Transforming Growth Factor beta1/physiology , Ovarian Neoplasms/pathology , Ovarian Neoplasms/drug therapy , Immunohistochemistry , Cells, Cultured , Blotting, Western , Drug Resistance, Neoplasm/physiology , Tumor Suppressor Proteins/physiology , Cell Line, Tumor , Cell Proliferation , Smad3 Protein/analysis , Transforming Growth Factor beta1/analysis , Gene Knockdown Techniques , Real-Time Polymerase Chain Reaction , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL