Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Language
Year range
1.
Braz. arch. biol. technol ; 63: e20190024, 2020. tab, graf
Article in English | LILACS | ID: biblio-1132186

ABSTRACT

Abstract Pigments produced by submerged fermentation of three filamentous fungi isolated from Brazilian caves, namely Aspergillus keveii, Penicillium flavigenum, and Epicoccum nigrum, were submitted to spray drying in presence of the adjuvants maltodextrin, modified starch or gum arabic. Yellow fine powders with low moisture content and water activity, and high color retention (> 70%) were successfully generated with a high product recovery ratio (> 50%), independently of the adjuvant used. The dried products have enhanced stability and potential to might be used as a natural colorant in food and pharmaceutical applications.


Subject(s)
Animals , Pigments, Biological/biosynthesis , Starch/biosynthesis , Fungi/metabolism , Gum Arabic , Maltose/biosynthesis , Aspergillus , Brazil , Caves/microbiology , Fungi/classification , Maltose/analogs & derivatives , Models, Theoretical
2.
Article in English | IMSEAR | ID: sea-163096

ABSTRACT

Aims: To isolate and optimize the culture conditions for thermo stable and alkaline amylase production from bacteria. Study Design: Optimization of different physiological and nutritional parameters for amylase production and kinetic studies of amylase. Place and Duration of Study: Soil Samples: Herbal garden of Amity University Haryana, Gurgaon (Manesar), India, between April 2012 and September 2012. Methodology: Amylolytic isolates were selected by flooding the nutrient agar plates containing 2% starch with Lugol solution. Isolates were selected on the basis of higher ratio of clear zone to colony size and grown in nutrient broth containing 2% starch. The level of amylase was detected in the culture filtrate. The selected isolate showing maximum amylase production was identified on the basis of 16S rDNA amplification. Results: An Alkalo-thermostable amylase producing bacterial isolate from soil was identified as Bacillus sp. strain PM1 on the basis of 16S rRNA. It yielded 3.5 U/ml of amylase in medium containing (%) starch 2.0, beef extract 0.5, NaCl 0.5 at 50ºC, pH 7.0 at 180 rpm after 72 h. The optimum pH and temperature for amylase activity was 8.0 and 50°C, respectively. The enzyme exhibited 67% activity after 60 minute incubation at 50ºC. At pH 8.0, the enzyme retained 78% activity after 4 h. Conclusion: The properties of the isolated enzyme are adequate for its use in starch processing and baking industry.


Subject(s)
Amylases/biosynthesis , Amylases/physiology , Bacillus/classification , Bacillus/enzymology , Bacillus/isolation & purification , Culture Techniques , Enzyme Stability , India , RNA, Ribosomal, 16S , Starch/biosynthesis , Starch/physiology , Temperature
3.
Indian J Biochem Biophys ; 2000 Apr; 37(2): 135-9
Article in English | IMSEAR | ID: sea-28078

ABSTRACT

Detached ears of sorghum (Sorghum vulgare) were cultured in complete liquid medium containing Ca2+(0, 3, 10 and 30 mM) and effect of this ion on the conversion of sucrose to starch with respect to the activities of amylases, sucrose synthase, sucrose phosphate synthase and soluble invertases were studied in developing grains. Presence of 3 mM Ca2+ in culture medium enhanced both accumulation of starch and activity of alpha-amylase in grain but without having any influence on the activity of beta-amylase. However, with 10 and 30 mM Ca2+, the accumulation of starch and activities of both amylases decreased and with advancement in culturing period, starch accumulation was further decreased. Irrespective of its concentration, Ca2+ enhanced the activities of sucrose synthase (synthesis), sucrose-phosphate synthase, soluble acid invertase and soluble-neutral invertase. Increase in the concentration of Ca2+ in culture medium was concomitant with an elevation in relative proportion of sucrose in the grain reflecting a net balance in per cent increase with Ca2+ in the activities of sucrose-synthesizing enzymes over sucrose-hydrolysing ones. Based on the results, it is suggested that assimilation of Ca2+ by grain is essential for maintaining high activity of alpha-amylase to generate starch primers required for the conversion of sucrose to starch during grain filling in sorghum.


Subject(s)
Amylases/metabolism , Calcium/metabolism , Edible Grain/metabolism , Starch/biosynthesis , Sucrose/metabolism
4.
Indian J Biochem Biophys ; 1993 Oct; 30(5): 270-6
Article in English | IMSEAR | ID: sea-28243

ABSTRACT

Rate of net CO2 exchange and activities of the key enzymes of fru-2,6-P2, sucrose and starch synthesis and levels of certain intermediates of Calvin cycle were determined in Brassica pods at different stages of their development. The rate of net CO2 exchange, activities of FBPase, UDPG-pyrophosphorylase and SPS, and the contents of 3-PGA, DHAP, RuBP and UDPG increased up to day 21 after anthesis followed by a continuous decrease thereafter. However the content of fru-6-P started decreasing only after 28 days of anthesis. Changes in the levels of fru-2,6-P2 were closely associated with the changes in F6P 2-kinase activity rather than with F2,6-P2ase activity. Similarly, activities of ADPG-pyrophosphorylase and ADPG-starch synthetase closely followed the pattern of starch accumulation in pod tissues. These observations suggest that during the early phase of pod development (up to 21 days after anthesis), which is also the active phase for pod photosynthesis, carbon is mainly utilised for sucrose synthesis and that during the later phase of pod development (from day 21 to 42 after anthesis), there is shift in metabolic path of carbon from sucrose to starch.


Subject(s)
Brassica/enzymology , Carbon Dioxide/metabolism , Fructose-Bisphosphatase/metabolism , Oxidation-Reduction , Photosynthesis , Starch/biosynthesis , Sucrose/biosynthesis , Time Factors , UTP-Glucose-1-Phosphate Uridylyltransferase/metabolism
5.
Indian J Biochem Biophys ; 1992 Feb; 29(1): 1-8
Article in English | IMSEAR | ID: sea-28691
SELECTION OF CITATIONS
SEARCH DETAIL