Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Journal of Zhejiang University. Science. B ; (12): 708-717, 2018.
Article in English | WPRIM | ID: wpr-1010409

ABSTRACT

otrA resembles elongation factor G (EF-G) and is considered to be an oxytetracycline (OTC)-resistance determinant in Streptomyces rimosus. In order to determine whether otrA also conferred resistance to OTC and other aminoglycosides to Streptomyces coelicolor, the otrA gene from S. rimosus M527 was cloned under the control of the strong ermE* promoter. The resulting plasmid, pIB139-otrA, was introduced into S. coelicolor M145 by intergeneric conjugation, yielding the recombinant strain S. coelicolor M145-OA. As expected S. coelicolor M145-OA exhibited higher resistance levels specifically to OTC and aminoglycosides gentamycin, hygromycin, streptomycin, and spectinomycin. However, unexpectedly, S. coelicolor M145-OA on solid medium showed an accelerated aerial mycelia formation, a precocious sporulation, and an enhanced actinorhodin (Act) production. Upon growth in 5-L fermentor, the amount of intra- and extracellular Act production was 6-fold and 2-fold higher, respectively, than that of the original strain. Consistently, reverse transcription polymerase chain reaction (RT-PCR) analysis revealed that the transcriptional level of pathway-specific regulatory gene actII-orf4 was significantly enhanced in S. coelicolor M145-OA compared with in S. coelicolor M145.


Subject(s)
Aminoglycosides/pharmacology , Anthraquinones/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Drug Resistance, Bacterial/genetics , Streptomyces coelicolor/metabolism
2.
Electron. j. biotechnol ; 15(1): 8-8, Jan. 2012. ilus, tab
Article in English | LILACS | ID: lil-640534

ABSTRACT

Background: The growing problem of environmental pollution caused by synthetic plastics has led to the search for alternative materials such as biodegradable plastics. Of the biopolymers presently under development, starch/natural rubber is one promising alternative. Several species of bacteria and fungi are capable of degrading natural rubber and many can degrade starch. Results: Streptomyces coelicolor CH13 was isolated from soil according to its ability to produce translucent halos on a mineral salts medium, MSM, supplemented with natural rubber and to degrade starch. Scanning electron microscope studies showed that it colonized the surfaces of strips of a new starch/natural rubber biopolymer and rubber gloves and caused degradation by forming holes, and surface degradation. Starch was completely removed and polyisoprene chains were broken down to produce aldehyde and/or carbonyl groups. After 6 weeks of cultivation with strips of the polymers in MSM, S. coelicolor CH13 reduced the weight of the starch/NR biopolymer by 92 percent and that of the rubber gloves by 14.3 percent. Conclusions: This study indicated that this bacterium causes the biodegradation of the new biopolymer and natural rubber and confirms that this new biopolymer can be degraded in the environment and would be suitable as a ‘green plastic’ derived from natural sources.


Subject(s)
Starch/metabolism , Biopolymers/metabolism , Rubber/metabolism , Streptomyces coelicolor/metabolism , Streptomyces coelicolor/chemistry , Biodegradation, Environmental , Biopolymers/chemistry , Rubber/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL