Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Invest. clín ; 51(4): 501-518, dic. 2010. ilus, tab
Article in Spanish | LILACS | ID: lil-630908

ABSTRACT

Los cultivos neuronales del sistema nervioso central se han venido usando ampliamente para el estudio de los mecanismos que conducen el proceso de diferenciación neuronal, así como también se han empleado como modelos in vitro para evaluar drogas y desarrollar nuevas terapias, de allí la importancia profundizar en la caracterización de dicho proceso. En este estudio, se prepararon cultivos primarios de células del hipocampo para estudiar los tipos celulares desarrollados, el desarrollo de dendritas y axones, la densidad de vesículas sinápticas y el desarrollo de los conos de crecimiento. Mediante inmunofluorescencia usando anticuerpos y marcadores no inmunológicos, se observaron los cambios experimentados por las estructuras de interés durante diferentes estadios temporales (1-21 días). Observamos una mayor proporción de neuronas sobre glias, desarrollo normal de las redes neuronales (conformadas por dendritas y axones), incremento en la longitud de dendritas y el establecimiento de sinapsis. Las vesículas sinápticas también experimentaron un incremento en su densidad a medida que aumentaba el tiempo de cultivo. Finalmente, se estudiaron los cambios morfológicos de los conos de crecimiento observándose que al inicio del cultivo en su mayoría se encontraban cerrados, pero a medida que maduraban las neuronas la proporción de conos de crecimiento abiertos aumentó. Este trabajo representa un avance en la caracterización morfométrica de los cultivos neuronales puesto que recoge de manera simultánea y cuantitativa los principales aspectos que marcan el proceso de diferenciación neuronal. En este estudio, la medición de estas características morfológicas hizo posible establecer parámetros cuantitativos que ayudarán a distinguir las principales etapas de la diferenciación neuronal.


Neuronal cultures of the central nervous system are widely used to study the molecular mechanisms that rule the differentiation process. These cultures have also been used to evaluate drugs and to develop new therapies. From this we can infer the relevance of performing an extended characterization that involves the main aspects driving such process. To carry out such characterization in the present study we prepared primary cultures from hippocampal cells to study cell identity, development of neuronal processes (dendrites and axons), density of synaptic vesicles and development of growth cones. Using immunofluorescence techniques, specific antibodies and non-immunological probes, we studied the changes experienced by the structures under study during different temporal stages (1-21 days). We observed a major proportion of neurons over glia, normal development of neuronal networks (formed by dendrites and axons), increase in the length of dendrites and axons and establishment of synaptic connections. Synaptic vesicles also showed an increase in their densities as long as the time of the culture progressed. Finally, we studied the morphological changes of the growth cones and observed that those were mostly closed at the beginning of the culture period. As neurons matured we observed an increase in the proportion of open growth cones. This work represents an advance in the morphometric characterization of neuronal cultures, since it gathers the main aspects that outline the neuronal differentiation process. In this study, measurement of these morphological features made possible to establish quantitative markers that will allow establishing more precisely the different stages of neuronal differentiation.


Subject(s)
Animals , Rats , Hippocampus/cytology , In Vitro Techniques , Neurogenesis , Neurons/cytology , Axons/ultrastructure , Cells, Cultured/cytology , Dendrites/ultrastructure , Growth Cones/ultrastructure , Hippocampus/embryology , Microscopy, Fluorescence , Microscopy, Interference , Neuroglia/cytology , Rats, Sprague-Dawley , Synaptic Vesicles/ultrastructure
2.
Braz. j. med. biol. res ; 31(11): 1491-500, Nov. 1998. graf, ilus
Article in English | LILACS | ID: lil-224483

ABSTRACT

Optical tracers in conjunction with fluorescence microscopy have become widely used to follow the movement of synaptic vesicles in nerve terminals. The present review discusses the use of these optical methods to understand the regulation of exocytosis and endocytosis of synaptic vesicles. The maintenance of neurotransmission depends on the constant recycling of synaptic vesicles and important insights have been gained by visualization of vesicles with the vital dye FM1-43. A number of questions related to the control of recycling of synaptic vesicles by prolonged stimulation and the role of calcium to control membrane internalization are now being addressed. It is expected that optical monitoring of presynaptic activity coupled to appropriate genetic models will contribute to the understanding of membrane traffic in synaptic terminals.


Subject(s)
Cell Movement , Endocytosis , Exocytosis , Fluorescent Dyes , Nerve Endings , Synaptic Vesicles/physiology , Cell Membrane , Pyridinium Compounds , Synaptic Vesicles/ultrastructure
3.
Microsc. electron. biol. celular ; 15(1): 93-105, Jun. 1991. ilus
Article in English | LILACS | ID: lil-121637

ABSTRACT

Se ha demostrado que la inhibición de la Na+, K+-ATPasa produce liberación de neurotransmisor en distintos modelos experimentales. En este laboratorio se observó previamente que una fracción soluble separada mediante Sephadex G-50 (pico II) es capaz de inhibir la actividad de Na+, K+-ATPasa pero no de otras enzimas asociadas a membranas. El objetivo del presente trabajo fue probar el efecto de la fracción pico II de cerebro sobre el contenido de neurotransmisor de las vesículas sinápticas de los nervios pineales. Se usaron ratas no inyectadas y ratas inyectadas 30 min antes con 5-hidroxidopamina (30 mg per Kg, i.p.). La 5-hidroxidopamina produce un falso neurotransmisor cuya presencia en las vesículas sinápticas se visualiza luego de la fijación con glutaraldehído-osmio como un material electrón denso que llena total o parcialmente las vesículas. En ratas no inyectadas se estudió la osmiofilia y la reacción cromafín del nucleoide electron denso. Las glándulas pineales se incubaron en solución Tyrode sin calcio en presencia y ausencia de pico II a temperatura ambiente y se estudiaron al microscopio electrónico. Cuando las glándulas de las ratas pretratadas con 5-hidroxidopamina se incubaron con pico II se observó una disminución siginificativa en el número de vesículas totalmente llenas de material electrón denso. Esto indica una reducción en el contenido de falso neurotransmisor contenido en la matriz de las vesículas sinápticas. Este efecto sobre las vesículas sinápticas no se observó en presencia de pico II invejecido, que no inhibe la Na+, K+-ATPasa. Cuando las gládulas de ratas no inyectadas se incubaron con pico II no se observaron cambios ni en la osmiofilia ni en la reacción cromafin de las vesículas sinápticas. La osmiofilia y la reacción cromafin del nucleoide electrón denso marca el sitio de acumulación de monoaminas (catecol e indolaminas en los nervios pineales). Estos resultados son coherentes con la idea de una relación entre la inhibición de la actividad de Na+, K+-ATPasa y la liberación de una fracción de neurotransmisor acumulado en los terminales nerviosos


Subject(s)
Animals , Rats , Neurons , Neurotransmitter Agents/metabolism , Norepinephrine/metabolism , Pineal Gland/drug effects , Nerve Tissue Proteins/antagonists & inhibitors , Brain Chemistry , Serotonin/metabolism , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Chromatography, Gel , Hydroxydopamines/pharmacokinetics , Microscopy, Electron , Neurons/enzymology , Neurons , Pineal Gland/ultrastructure , Tissue Extracts/pharmacology , Synaptic Vesicles/chemistry , Synaptic Vesicles/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL