Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 898-906, 2020.
Article in English | WPRIM | ID: wpr-881035

ABSTRACT

Taurochenodeoxycholic acid (TCDCA) is one of the main effective components of bile acid, playing critical roles in apoptosis and immune responses through the TGR5 receptor. In this study, we reveal the interaction between TCDCA and TGR5 receptor in TGR5-knockdown H1299 cells and the regulation of inflammation via the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA)-cAMP response element binding (CREB) signal pathway in NR8383 macrophages. In TGR5-knockdown H1299 cells, TCDCA significantly activated cAMP level via TGR5 receptor, indicating TCDCA can bind to TGR5; in NR8383 macrophages TCDCA increased cAMP content compared to treatment with the adenylate cyclase (AC) inhibitor SQ22536. Moreover, activated cAMP can significantly enhance gene expression and protein levels of its downstream proteins PKA and CREB compared with groups of inhibitors. Additionally, TCDCA decreased tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, IL-8 and IL-12 through nuclear factor kappa light chain enhancer of activated B cells (NF-κB) activity. PKA and CREB are primary regulators of anti-inflammatory and immune response. Our results thus demonstrate TCDCA plays an essential anti-inflammatory role via the signaling pathway of cAMP-PKA-CREB induced by TGR5 receptor.


Subject(s)
Animals , Humans , Rats , Cell Line , Cyclic AMP/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cytokines/metabolism , Inflammation , Macrophages , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/drug effects , Taurochenodeoxycholic Acid/pharmacology
2.
Biol. Res ; 53: 56-56, 2020. ilus, graf
Article in English | LILACS | ID: biblio-1505782

ABSTRACT

BACKGROUND: Neuronal apoptosis plays a critical event in the pathogenesis of early brain injury after subarachnoid hemorrhage (SAH). This study investigated the roles of Tauroursodeoxycholic acid (TUDCA) in attenuate neuronal apoptosis and underlying mechanisms after SAH. METHODS: Sprague-Dawley rats were subjected to model of SAH and TUDCA was administered via the internal carotid injection. Small interfering RNA (siRNA) for TGR5 were administered through intracerebroventricular injection 48 h before SAH. Neurological scores, brain water content, Western blot, TUNEL staining and immunofluorescence staining were evaluated. RESULTS: TUDCA alleviated brain water content and improved neurological scores at 24 h and 72 h after SAH. TUDCA administration prevented the reduction of SIRT3 and BCL-2 expressions, as well as the increase of BAX and cleaved caspase-3.Endogenous TGR5 expression were upregulated after SAH and treatment with TGR5 siRNA exacerbated neurological outcomes after SAH and the protective effects of TUDCA at 24 h after SAH were also abolished by TGR5 siRNA. CONCLUSIONS: Our findings demonstrate that TUDCA could attenuated neuronal apoptosis and improve neurological functions through TGR5/ SIRT3 signaling pathway after SAH. TUDCA may be an attractive candidate for anti-apoptosis treatment in SAH.


Subject(s)
Animals , Male , Rats , Subarachnoid Hemorrhage/drug therapy , Taurochenodeoxycholic Acid/therapeutic use , Apoptosis , Sirtuins/physiology , Receptors, G-Protein-Coupled/physiology , Neurons/pathology , Rats, Sprague-Dawley , Neurons/drug effects
3.
Biomedical and Environmental Sciences ; (12): 1-10, 2019.
Article in English | WPRIM | ID: wpr-773443

ABSTRACT

OBJECTIVE@#This study was conducted to investigate the regulation of endoplasmic reticulum stress on Nrf2 signaling pathway in the kidneys of rats.@*METHODS@#Rats were divided into twelve groups of six animals each. Some groups were pre-administered with bacitracin or tauroursodeoxycholic acid (TUDCA), and all of them were treated with 5-20 μmol/kg cadmium (Cd) for 48 h. The oxidative stress levels were analyzed using kits. The mRNA and protein expression levels of endoplasmic reticulum stress-related factors and Nrf2 signaling pathway-related factors were determined using RT-PCR and western blot.@*RESULTS@#Cd exposure resulted in oxidative stress in the kidneys of rats and upregulated the expression of endoplasmic reticulum stress (ERS)-related factors and Nrf2 signaling pathway-related factors, especially at doses of 10 and 20 μmol/kg Cd, and the expression changes were particularly obvious. Moreover, after pretreatment with bacitracin, Cd upregulated the expression of ERS-related factors to a certain extent and, at higher doses, increased the mRNA expression of Nrf2. After pretreatment with TUDCA, Cd reduced the level of ERS to a certain extent; however, at these doses, there were no significant changes in the expression of Nrf2.@*CONCLUSION@#Cadmium can result in ERS and oxidative stress in the kidneys of rats, activate Nrf2, and upregulate the transcriptional expression of phase II detoxification enzymes under these experimental conditions. ERS has a positive regulation effect on Nrf2 signaling pathway but has little effect on the negative regulation of Nrf2 signaling pathway in cadmium toxicity.


Subject(s)
Animals , Female , Male , Cadmium , Toxicity , Endoplasmic Reticulum Stress , Environmental Pollutants , Toxicity , Kidney , Metabolism , NF-E2-Related Factor 2 , Genetics , Metabolism , Oxidative Stress , Rats, Sprague-Dawley , Signal Transduction , Taurochenodeoxycholic Acid , Pharmacology
4.
Journal of Central South University(Medical Sciences) ; (12): 1165-1172, 2015.
Article in Chinese | WPRIM | ID: wpr-815359

ABSTRACT

OBJECTIVE@#To explore the mechanism of tauroursodeoxycholic acid (TUDCA) in suppressing apoptosis in pulmonary tissues of intermittent hypoxia (IH) mice model.
@*METHODS@#A total of 32 C57 mice were randomly divided into a control group, a TUDCA group, an IH group and an IH+TUDCA group (8 mice per group). The mice were put in specially designed chambers and exposed to IH treatment for 4 weeks. In the chambers, oxygen levels repeatedly decreased from 21% to 10% and recovered from 10% to 21%, lasting for 8 hours in every day. After 4 weeks of IH exposure, the expression levels of caspase-12 and cleaved caspase-3 in pulmonary tissues were detected by Western blot. Meanwhile, the expression levels of glucose regulated protein-78 (GRP78) and CCAAT/enhancer-binding protein homologous protein (CHOP) were quantified by Western blot, immunochemistry and real-time PCR.
@*RESULTS@#Compared with the control group, the expression levels of caspase-12, cleaved caspase-3, GRP78 and CHOP were increased in the IH group (all P<0.01). TUDCA treatment could reduce these proteins expression (all P<0.05).
@*CONCLUSION@#Endoplasmic reticulum stress-mediated apoptosis can be activated in pulmonary tissues after chronic IH exposure, and TUDCA can reduce the cellular apoptosis via suppressing endoplasmic reticulum stress.


Subject(s)
Animals , Mice , Apoptosis , Caspase 12 , Metabolism , Caspase 3 , Metabolism , Disease Models, Animal , Endoplasmic Reticulum Stress , Heat-Shock Proteins , Metabolism , Hypoxia , Lung , Mice, Inbred C57BL , Real-Time Polymerase Chain Reaction , Taurochenodeoxycholic Acid , Pharmacology , Transcription Factor CHOP , Metabolism
5.
China Journal of Chinese Materia Medica ; (24): 838-840, 2014.
Article in Chinese | WPRIM | ID: wpr-330351

ABSTRACT

<p><b>OBJECTIVE</b>To discriminate and determine of the artificial bear bile of the compound bile capsule.</p><p><b>METHOD</b>Taking the pharmacopoeia as reference, the artificial bear bile was discriminated and determined by HPLC.</p><p><b>RESULT</b>The compound bile capsule and the control sample had chromatographic peak at the same time from HPLC. The content of the artificial bear bile was above 10 mg per tablets.</p><p><b>CONCLUSION</b>The artificial bear bile of compound bile capsules can be discriminated effectively and determined accurately by HPLC method.</p>


Subject(s)
Animals , Bile , Chemistry , Capsules , Chromatography, High Pressure Liquid , Methods , Discriminant Analysis , Medicine, Chinese Traditional , Taurochenodeoxycholic Acid , Ursidae
6.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 189-194, 2013.
Article in English | WPRIM | ID: wpr-343120

ABSTRACT

No direct comparison of tauroursodeoxycholic acid (TUDCA) and ursodeoxycholic acid (UDCA) has yet been carried out in the treatment of liver cirrhosis in China. We designed a double-blind randomized trial to evaluate the potential therapeutic efficacy of TUDCA in liver cirrhosis, using UDCA as parallel control. The enrolled 23 patients with liver cirrhosis were randomly divided into TUDCA group (n=12) and UDCA group (n=11), and given TUDCA and UDCA respectively at the daily dose of 750 mg, in a randomly assigned sequence for a 6-month period. Clinical, biochemical and histological features, and liver ultrasonographic findings were evaluated before and after the study. According to the inclusion criteria, 18 patients were included in the final analysis, including 9 cases in both two groups. Serum ALT, AST and ALP levels in TUDCA group and AST levels in UDCA group were significantly reduced as compared with baseline (P<0.05). Serum albumin levels were significantly increased in both TUDCA and UDCA groups (P<0.05). Serum markers for liver fibrosis were slightly decreased with the difference being not significant in either group. Only one patient in TUDCA group had significantly histological relief. Both treatments were well tolerated and no patient complained of side effects. It is suggested that TUDCA therapy is safe and appears to be more effective than UDCA in the treatment of liver cirrhosis, particularly in the improvement of the biochemical expression. However, both drugs exert no effect on the serum markers for liver fibrosis during 6-month treatment.


Subject(s)
Adult , Female , Humans , Male , Middle Aged , Cholagogues and Choleretics , Therapeutic Uses , Double-Blind Method , Liver Cirrhosis , Diagnosis , Drug Therapy , Taurochenodeoxycholic Acid , Therapeutic Uses , Treatment Outcome , Ursodeoxycholic Acid , Therapeutic Uses
7.
Acta Pharmaceutica Sinica ; (12): 1297-1300, 2013.
Article in Chinese | WPRIM | ID: wpr-259479

ABSTRACT

A method of LC-QTOF/MS combining with chemical synthesis has been used to determine the structures of three novel bile acids from bear bile powder. Reference substances of tauroursodeoxycholic acid and taurochenodeoxycholic acid were oxidized by pyridinium chlorochromate. The products were analyzed by LC-QTOF/MS. Total 4 products including 3 isomers were predicted and identified according to the PCC oxidation theory and LC-QTOF/MS results. Bear bile powder samples were dissolved by methanol and analyzed by LC-QTOF/MS. Three unknown peaks were found and identified as 2-[[(3beta, 5beta)-3-hydroxy-7, 24-dioxocholan-24-yl]amino]-ethanesulfonic acid, 2-[[(5beta)-3, 7, 24-trioxocholan-24-yl]amino]-ethanesulfonic acid and 2-[[(5beta, 7beta)-7-hydroxy-3, 24-dioxocholan-24-yl]amino]-ethanesulfonic acid, separately, by matching their results with that of oxidation products above.


Subject(s)
Animals , Bile , Chemistry , Bile Acids and Salts , Chemistry , Chromatography, Liquid , Methods , Isomerism , Molecular Structure , Oxidation-Reduction , Powders , Chemistry , Spectrometry, Mass, Electrospray Ionization , Methods , Taurochenodeoxycholic Acid , Chemistry , Ursidae
8.
Acta Pharmaceutica Sinica ; (12): 39-44, 2011.
Article in Chinese | WPRIM | ID: wpr-353332

ABSTRACT

Metabolic profile of bile acids was used to evaluate hepatotoxicity of mice caused by ethanol extraction of Dioscorea bulbifera L. (ethanol extraction, ET) and diosbulbin B (DB), separately. Ultra-performance liquid chromatography coupled with quadrupole mass spectrometry (UPLC-MS) was applied to determine the contents of all kinds of endogenous bile acids including free bile acids, taurine conjugates and glycine conjugates. Obvious liver injuries could be observed in mice after administrated with ET and DB. Based on the analysis using principle components analysis (PCA), toxic groups could be distinguished from their control groups, which suggested that the variance of the contents of bile acids could evaluate hepatotoxicity caused by ET and DB. Meanwhile, ET and DB toxic groups were classified in the same trends comparing to control groups in the loading plot, and difference between the two toxic groups could also be observed. DB proved to be one of the toxic components in Dioscorea bulbifera L. Bile acids of tauroursodeoxycholic acid (TUDCA), taurochenodeoxycholic acid (TCDCA), taurocholic acid (TCA), taurodeoxycholic acid (TDCA), cholic acid (CA) and others proved to be important corresponds to ET and DB induced liver injury according to analysis of partial least square-discriminant analysis (PLS-DA) and the statistical analysis showed that there were significant differences between the control groups and toxic groups (P < 0.01). Furthermore, good correlation could be revealed between the foregoing bile acids and ALT, AST. It indicated that taurine conjugated bile acids as TUDCA, TCDCA, TCA and TDCA along with CA could be considered as sensitive biomarkers of ET and DB induced liver injury. This work can provide the base for the further research on the evaluation and mechanism of hepatotoxicity caused by Dioscorea bulbifera L.


Subject(s)
Animals , Male , Mice , Bile Acids and Salts , Metabolism , Chemical and Drug Induced Liver Injury , Metabolism , Cholic Acid , Metabolism , Chromatography, High Pressure Liquid , Methods , Dioscorea , Toxicity , Drugs, Chinese Herbal , Toxicity , Heterocyclic Compounds, 4 or More Rings , Toxicity , Least-Squares Analysis , Mice, Inbred ICR , Plants, Medicinal , Toxicity , Principal Component Analysis , Rhizome , Toxicity , Tandem Mass Spectrometry , Methods , Taurochenodeoxycholic Acid , Metabolism , Taurocholic Acid , Metabolism , Taurodeoxycholic Acid , Metabolism
9.
The Korean Journal of Gastroenterology ; : 176-185, 2004.
Article in Korean | WPRIM | ID: wpr-64704

ABSTRACT

BACKGROUND/AIMS: Deoxycholic acid (DCA) has been appeared to be an endogenous colon tumor promoter. In this study, we investigated whether DCA induces nuclear factor-kappa B (NF-kappa B) activation and IL-8 expression, and tauroursodeoxycholic acid (TUDC) inhibits this signaling in HT-29 cells. METHODS: After DCA treatments, time courses of NF-kappa B binding activity were determined by electrophoretic mobility shift assay (EMSA). Also, we performed Western blotting of I kappa B alpha to confirm NF-kappa B activation. Time and concentration courses of DCA-induced secretion of IL-8 were measured with ELISA in supernatants of cultured media from the cells. To evaluate the role of NF-kappa B, IL-8 levels were assessed after pretreatment with using phosphorothioate-modified anti-sense oligonucleotides (ODN). Moreover, DCA-induced secretions of IL-8 were measured after pretreatment with TUDC. RESULTS: DCA dose-dependently induced prominent NF-kappa B binding complexes from 30 min to 8 hr and degradation of I kappa B alpha. The secretions of IL-8 were increased with DCA (50~200 micro M) treatment in a time and dose-dependent manner. Pre-incubation of the cells with TUDC (0.1~10 micro M) for 2 hours caused significant decreases in DCA induced IL-8 secretion. However, transient transfection using p50 or p65 AS-ODN showed no effect on IL-8 secretion. CONCLUSIONS: DCA may play as a colonic tumor promoter through anti-apoptotic effect of NF-kappa B activation and IL-8 expression, and DCA-induced NF-kappa B independent IL-8 expression is inhibited by TUDC.


Subject(s)
Humans , Blotting, Western , Colonic Neoplasms , Deoxycholic Acid/pharmacology , Dose-Response Relationship, Drug , Electrophoretic Mobility Shift Assay , English Abstract , HT29 Cells , Interleukin-8/metabolism , NF-kappa B/metabolism , Oligonucleotides, Antisense/pharmacology , Signal Transduction/drug effects , Taurochenodeoxycholic Acid/pharmacology , Transcriptional Activation/drug effects
10.
Chinese Journal of Hepatology ; (12): 298-301, 2003.
Article in Chinese | WPRIM | ID: wpr-344416

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the effect of Tauroursodeoxycholic acid (TUDCA) on Taurodeoxycholic acid (TDCA)-induced HepG2 cell apoptosis and to clarify the molecular mechanism of its anti-apoptosis effect of TUDCA.</p><p><b>METHODS</b>Morphologic evaluation of apoptotic cells was performed by Hoechst 33258 staining and electron microscope. DNA fragment was detected by electrophoresis on 1.5% agarose gels. Apoptosis rate was measured by flow cytometry using PI dye. Following incubation of HepG2 cells either with TDCA alone, or coincubation with TUDCA and TDCA, the releasing level of cytochrome c from mitochondria into cytosol was determined by western blot, also the activity of caspase-3, 8, 9.</p><p><b>RESULTS</b>Incubating the cells with 400 micromol/L TDCA for 12 h induced the cells apoptosis significantly. The apoptotic rate decreased from 50.35% +/- 2.20% to 13.78% +/- 0.84% after coincubation with TUDCA, and this anti-apoptotic effect of TUDCA was confirmed by morphological and DNA ladder detection. TUDCA significantly inhibited the release of cytochrome C from mitochondria into cytosol, and the activity of caspase-9, 3 (t > or = 13.00, P < 0.01), especially at 12 h, caspase-3 activity decreased by 54.9% (t = 16.88, P < 0.01) and 52.5%, however it had no obvious effect on the activity of caspase-8 (t = 1.94, P > 0.05).</p><p><b>CONCLUSIONS</b>TUDCA prevents HepG2 cells apoptosis induced by TDCA through modulating mitochondrial membrane stability, inhibiting the release of cytochrome c and the activation of procaspase-9 and 3. Anti-apoptotic mechanism of TUDCA may be considered to be one of the most important reasons that TUDCA exerts significant efficacy in the treatment of cholestatic liver diseases.</p>


Subject(s)
Humans , Apoptosis , Carcinoma, Hepatocellular , Pathology , Caspase 3 , Caspase 9 , Caspases , Metabolism , Cytochromes c , Pharmacology , Liver Neoplasms , Pathology , Taurochenodeoxycholic Acid , Pharmacology , Taurodeoxycholic Acid , Pharmacology , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL