Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Article in English | IMSEAR | ID: sea-95196

ABSTRACT

Rhodanese is one of the enzymes concerned in the detoxification of cyanide. Cassava intake and consequent cyanide toxicity are incriminated in the pathogenesis of goitre and calcific pancreatitis of tropics. So we studied the activity of rhodanese in these patients. 14 controls, 13 patients with pancreatitis and 12 with goitre were studied. The median (and range) of rhodanese in these groups were 82 (50-144), 110 (64-180) and 71 (22-160) units respectively. The serum rhodanese was significantly higher (P less than 0.05) in patients with pancreatitis when compared to the other groups. There was no significant difference between the serum rhodanese in patients with goitre and the controls. The presence of adequate amounts of rhodanese indicates that goitre and chronic pancreatitis are not produced by impaired cyanide detoxification.


Subject(s)
Adult , Calcinosis/enzymology , Chronic Disease , Cyanides/poisoning , Developing Countries , Goiter/enzymology , Humans , India , Manihot/poisoning , Pancreatitis/enzymology , Sulfurtransferases/blood , Thiosulfate Sulfurtransferase/blood
2.
Indian J Exp Biol ; 1989 Jun; 27(6): 551-5
Article in English | IMSEAR | ID: sea-56156

ABSTRACT

Diseases like tropical ataxic neuropathy and endemic goitre have been reported to have definite correlation with a chronic ingestion of cassava (Manihot esculenta Crantz). The toxicity of cassava has been attributed to its two cyanogenic glycosides, linamarin and lotaustralin. In this study, an attempt has been made to understand the pattern of changes in certain clinically significant enzymes brought about by the chronic administration of sublethal doses of linamarin to rabbits. The profound elevation in rhodanese activity observed in the linamarin and cyanide treated rabbits indicated the attempt of the tissues to detoxify cyanide. That intact linamarin could be hydrolysed in vivo was a significant finding from the study. The mode of toxicity of linamarin was similar to that of cyanide by producing a gradual shift from aerobic to anaerobic metabolism.


Subject(s)
Animals , Brain/enzymology , Cyanides/toxicity , Electron Transport Complex IV/metabolism , Kidney/enzymology , L-Lactate Dehydrogenase/blood , Lipoprotein Lipase/metabolism , Liver/enzymology , Male , Inactivation, Metabolic , Myocardium/enzymology , Nitriles/pharmacokinetics , Potassium Cyanide/pharmacokinetics , Rabbits , Sulfurtransferases/metabolism , Thiosulfate Sulfurtransferase/blood , beta-Glucosidase/blood
SELECTION OF CITATIONS
SEARCH DETAIL