Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters








Language
Year range
1.
Braz. j. microbiol ; 49(supl.1): 236-245, 2018. graf
Article in English | LILACS | ID: biblio-974331

ABSTRACT

ABSTRACT Salinity and alkalinity are major abiotic stresses that limit growth and development of poplar. We investigated biocontrol potential of saline- and alkaline-tolerant mutants of Trichoderma asperellum to mediate the effects of salinity or alkalinity stresses on Populus davidiana × P. alba var. pyramidalis (PdPap poplar) seedlings. A T-DNA insertion mutant library of T. asperellum was constructed using an Agrobacterium tumefaciens mediated transformation system; this process yielded sixty five positive transformants (T1-T65). The salinity tolerant mutant, T59, grew in Potato Dextrose Agar (PDA) containing up to 10% (1709.40 mM) NaCl. Under NaCl-rich conditions, T59 was most effective in inhibiting Alternaria alternata (52.00%). The alkalinity tolerant mutants, T3 and T5, grew in PDA containing up to 0.4% (47.62 mM) NaHCO3. The ability of the T3 and T5 mutants to inhibit Fusarium oxysporum declined as NaHCO3 concentrations increased. NaHCO3 tolerance of the PdPap seedlings improved following treatment with the spores of the WT, T3, and T5 strains. The salinity tolerant mutant (T59) and two alkalinity tolerant mutants (T3 and T5) generated in this study can be applied to decrease the incidence of pathogenic fungi infection under saline or alkaline stress.


Subject(s)
Plant Diseases/microbiology , Trichoderma/physiology , Sodium Chloride/metabolism , Populus/growth & development , Alkalies/metabolism , Alternaria/physiology , Antibiosis , Plant Diseases/prevention & control , Stress, Physiological , Trichoderma/genetics , Populus/microbiology , Seedlings/growth & development , Seedlings/microbiology
2.
Braz. j. microbiol ; 47(1): 10-17, Jan.-Mar. 2016. graf
Article in English | LILACS | ID: lil-775109

ABSTRACT

Abstract The antagonistic potential of Trichoderma strains was assayed by studying the effect of their culture filtrate on the radial growth of Sclerotium rolfsii, the causal agent of chickpea collar rot. Trichoderma harzianum-1432 (42.2%) and Trichoderma atroviride (40.3%) were found to be strong antagonists. To enhance their antagonistic potential, mutagenesis of these two selected strains was performed. Two mutants, Th-m1 and T. atroviride m1, were found to be more effective than their parent strains. The enzymatic activities of the selected parent and mutant strains were assayed, and although both mutants were found to have enhanced enzymatic activities compared to their respective parent strains, Th-m1 possessed the maximum cellulase (5.69 U/mL) and β-1,3-glucanase activity (61.9 U/mL). Th-m1 also showed high competitive saprophytic ability (CSA) among all of the selected parent and mutant strains, and during field experiments, Th-m1 was found to successfully possess enhanced disease control (82.9%).


Subject(s)
Antibiosis/drug effects , Basidiomycota/growth & development , Mutagenesis , Mutagens/metabolism , Plant Diseases/prevention & control , Trichoderma/drug effects , Trichoderma/physiology , Cicer/microbiology , Hydrolases/analysis , Mutation , Plant Diseases/microbiology , Trichoderma/enzymology , Trichoderma/growth & development
3.
Braz. j. microbiol ; 46(4): 1093-1101, Oct.-Dec. 2015. graf
Article in English | LILACS | ID: lil-769640

ABSTRACT

Abstract Sampling of agricultural soils from the Mexican northeastern region was performed to detect Trichoderma spp., genetically characterize it, and assess its potential use as a biologic control agent against Macrophomina phaseolina. M. phaseolina is a phytopathogen that attacks over 500 species of cultivated plants and causes heavy losses in the regional sorghum crop. Sampling was performed immediately after sorghum or corn harvest in an area that was approximately 170 km from the Mexico-USA border. Sixteen isolates were obtained in total. Using colony morphology and sequencing the internal transcribed spacers (ITS) 1 and 4 of 18S rDNA, 14 strains were identified as Trichoderma harzianum, T. koningiopsis and T. virens. Subsequently, their antagonistic activity against M. phaseolina was evaluated in vitro, and 11 isolates showed antagonism by competition and stopped M. phaseolina growth. In 4 of these isolates, the antibiosis phenomenon was observed through the formation of an intermediate band without growth between colonies. One strain, HTE808, was identified as Trichoderma koningiopsis and grew rapidly; when it came into contact with the M. phaseolina colony, it continued to grow and sporulated until it covered the entire petri dish. Microscopic examination confirmed that it has a high level of hyperparasitism and is thus considered to have high potential for use in the control of this phytopathogen.


Subject(s)
Antibiosis/microbiology , Antibiosis/physiology , Antibiosis/prevention & control , Ascomycota/microbiology , Ascomycota/physiology , Ascomycota/prevention & control , Mexico/microbiology , Mexico/physiology , Mexico/prevention & control , Plant Diseases/microbiology , Plant Diseases/physiology , Plant Diseases/prevention & control , Sorghum/microbiology , Sorghum/physiology , Sorghum/prevention & control , Trichoderma/microbiology , Trichoderma/physiology , Trichoderma/prevention & control , Zea mays/microbiology , Zea mays/physiology , Zea mays/prevention & control
4.
Braz. j. microbiol ; 43(4): 1467-1475, Oct.-Dec. 2012. graf, tab
Article in English | LILACS | ID: lil-665834

ABSTRACT

The characteristics of an endoglucanase produced by a Trichoderma virens strain T9 newly isolated from a palm-fruit husk dump site, its physiological characteristics and enzyme production were studied. Whole cells of the depolymerizing-enzyme producing T. virens were applied to palm-fruit husk and bird performance characteristics when employed as poultry diet additive were considered. Endoglucanase activity in submerged fermentation was 1.6 nkat. Optimum activity was recorded at pH 6.0 and 55ºC. The enzyme retained 50% residual glucanase activity at 70ºC for 10 minutes. 1.0% Tween-80 and SDS yielded endoglucanase activity 2.15 times higher than the control. Activity wasboosted by 20mM Ca2+ (115.0%); 10mM K+ (106.5%); and was totally inhibited by 1mM Hg2+. The addition of T. virens -fermented palm-fruit husk with other layer feed components on the bird characteristics showed that change in bird weight between the control and test birds were not significantly different (p>0.05) but differed in terms of daily feed ingested (p<0.05). The feed to weight-gain ratio was best with the unmodified palm-fruit husk based diet (8.59). There was no significant difference in the egg weights from modified palm-fruit husk based diet and control (p>0.05). The shell thickness (0.64mm) and yolk content (23.61%) were highest in the microbially-modified husk diet. The alternative to maize based diets proffered by the application of T. virens -modified palm-fruit husk in poultry nutrition in terms of bird weight and feed to weight-gain ratio affords the poultry farmer an economic advantage and allows for a greater utilization of the maize in human diets.


Subject(s)
Cellulases/analysis , /analysis , Trichoderma/physiology , Trichoderma/isolation & purification , Industrial Microbiology , Methodology as a Subject
5.
Braz. j. microbiol ; 42(4): 1625-1637, Oct.-Dec. 2011. ilus, tab
Article in English | LILACS | ID: lil-614629

ABSTRACT

With the aim of a better characterization of the somatic recombination process in Trichoderma pseudokoningii, a progeny from crossings between T. pseudokoningii strains contrasting for auxotroph markers was characterized by RAPD markers and PFGE (electrophoretic karyotype). Cytological studies of the conidia, conidiogenesis and heterokaryotic colonies were also performed. The genotypes of the majority of the recombinant strains analyzed were similar to only one of the parental strains and the low frequency of polymorphic RAPD bands suggested that the nuclear fusions may not occur into the heterokaryon. In some heterokaryotic regions the existence of intensely staining hyphae might be related to cell death. We proposed that a mechanism of somatic recombination other than parasexuality might occur, being related to limited vegetative compatibility after postfusion events, as described for other Trichoderma species.


Subject(s)
Genetic Markers , Polymorphism, Genetic , Recombination, Genetic , Soil Microbiology , Spores, Fungal , Trichoderma/physiology , Trichoderma/genetics , Methods , Soil , Methods , Virulence
6.
Electron. j. biotechnol ; 13(2): 1-2, Mar. 2010. ilus, tab
Article in English | LILACS | ID: lil-567079

ABSTRACT

Biocontrol of Rhizoctonia solani in tomatoes cultivated under greenhouse and field conditions was analyzed using the Trichoderma harzianum mutants Th650-NG7, Th11A80.1, Th12A40.1, Th12C40.1 and Th12A10.1 and ThF2-1, respectively. Their innocuousness on tomato cultivars 92.95 and Gondola (greenhouse assays), and on cultivar Fortaleza (field assays) was established. Alginate pellets (1.7 g pellets/L soil) containing c.a1 x 10(5) colony forming units (cfu)/g pellet were applied to a soil previously inoculated with R. solani at transplant (greenhouse) or to a naturally infected soil (field). Controls considered parental wild strains, a chemical fungicide and no additions. Th11A 80.1, Th12A10.1 and Th650-NG7 prevented the 100% mortality of tomato plants cv. 92.95 caused by R. solani, and the 40% mortality in tomato plants cv. Gondola (greenhouse assays). Mortality reduction was reflected in canker level lessening and in plant parameters increases (development, fresh and dry weights). A different degree of susceptibility of tomato plants was observed, being Gondola cv. more resistant than 92.95 cv. to infection in a soil previously inoculated with R. solani. Tomato plants of cv. Fortaleza did not show mortality in naturally infected soils (field assays), where the mutant ThF2-1 reduced significantly the canker level caused by R. solani.


Subject(s)
Antibiosis , Pest Control, Biological/methods , Solanum lycopersicum/microbiology , Rhizoctonia/physiology , Trichoderma/physiology , Plant Diseases/microbiology , Greenhouses , Solanum lycopersicum/growth & development , Mutagenesis , Plant Roots/growth & development , Plant Roots/microbiology , Soil Microbiology , Trichoderma/genetics
SELECTION OF CITATIONS
SEARCH DETAIL