Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Mem. Inst. Oswaldo Cruz ; 108(5): 554-562, ago. 2013. graf
Article in English | LILACS | ID: lil-680770

ABSTRACT

Interfering with cellular signal transduction pathways is a common strategy used by many viruses to create a propitious intracellular environment for an efficient replication. Our group has been studying cellular signalling pathways activated by the orthopoxviruses Vaccinia (VACV) and Cowpox (CPXV) and their significance to viral replication. In the present study our aim was to investigate whether the GTPase Rac1 was an upstream signal that led to the activation of MEK/ERK1/2, JNK1/2 or Akt pathways upon VACV or CPXV' infections. Therefore, we generated stable murine fibroblasts exhibiting negative dominance to Rac1-N17 to evaluate viral growth and the phosphorylation status of ERK1/2, JNK1/2 and Akt. Our results demonstrated that VACV replication, but not CPXV, was affected in dominant-negative (DN) Rac1-N17 cell lines in which viral yield was reduced in about 10-fold. Viral late gene expression, but not early, was also reduced. Furthermore, our data showed that Akt phosphorylation was diminished upon VACV infection in DN Rac1-N17 cells, suggesting that Rac1 participates in the phosphoinositide-3 kinase pathway leading to the activation of Akt. In conclusion, our results indicate that while Rac1 indeed plays a role in VACV biology, perhaps another GTPase may be involved in CPXV replication.


Subject(s)
Animals , Mice , Cowpox virus/physiology , MAP Kinase Signaling System/physiology , Signal Transduction/physiology , Vaccinia virus/physiology , Virus Replication/physiology , rac1 GTP-Binding Protein/physiology , Chlorocebus aethiops , Phosphorylation/physiology , Vero Cells , rac1 GTP-Binding Protein/metabolism
2.
Mem. Inst. Oswaldo Cruz ; 105(3): 269-277, May 2010. ilus, graf
Article in English | LILACS | ID: lil-547311

ABSTRACT

In this paper, we provide evidence that both the mRNA and protein levels of the cyclin-dependent kinase (CDK) inhibitor p21WAF1/CDK-interacting protein 1 (Cip1) increase upon infection of A431 cells with Vaccinia virus (VACV). In addition, the VACV growth factor (VGF) seems to be required for the gene expression because infection carried out with the mutant virus VACV-VGF- revealed that this strain was unable to stimulate its transcription. Our findings are also consistent with the notion that the VGF-mediated change in p21WAF1/Cip1 expression is dependent on tyrosine kinase pathway(s) and is partially dependent on mitogen-activated protein kinase/extracellular-signal regulated kinase 1/2. We believe that these pathways are biologically significant because VACV replication and dissemination was drastically affected when the infection was carried out in the presence of the relevant pharmacological inhibitors.


Subject(s)
Humans , /metabolism , Vaccinia virus/physiology , Cell Line, Tumor , /genetics , Gene Expression Regulation, Viral/genetics , Mitogen-Activated Protein Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/genetics , Virus Replication/genetics
SELECTION OF CITATIONS
SEARCH DETAIL