Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters








Year range
1.
Electron. j. biotechnol ; 31: 67-54, Jan. 2018. ilus, tab, graf
Article in English | LILACS | ID: biblio-1022118

ABSTRACT

Background: Pretreatment of lignocellulosic biomass is essential for using it as a raw material for chemical and biofuel production. This study evaluates the effects of variables in the chemical pretreatment of the Arundo biomass on the glucose and xylose concentrations in the final enzymatic hydrolysate. Three pretreatments were tested: acid pretreatment, acid pretreatment followed by alkaline pretreatment, and alkaline pretreatment. Results: The amounts of glucose and xylose released by the enzymatic hydrolysis of the Arundo biomass obtained from acid pretreatment ranged from 6.2 to 19.1 g/L and 1.8 to 3.1 g/L, respectively. The addition of alkaline pretreatment led to a higher yield from the enzymatic hydrolysis, with the average glucose concentration 3.5 times that obtained after biomass hydrolysis with an acid pretreatment exclusively. The use of an alkaline pretreatment alone resulted in glucose and xylose concentrations similar to those obtained in the two-step pretreatment: acid pretreatment followed by alkaline pretreatment. There was no significant difference in 5-hydroxymethylfurfural, furfural, or acetic acid concentrations among the pretreatments. Conclusion: Alkaline pretreatment was essential for obtaining high concentrations of glucose and xylose. The application of an alkaline pretreatment alone resulted in high glucose and xylose concentrations. This result is very significant as it allows a cost reduction by eliminating one step.


Subject(s)
Ethanol/metabolism , Poaceae/chemistry , Acids/chemistry , Xylose/analysis , Cellulose/chemistry , Biomass , Biofuels , Glucose/analysis , Hydrolysis , Lignin
2.
Braz. j. microbiol ; 43(2): 627-634, Apr.-June 2012. tab
Article in English | LILACS | ID: lil-644479

ABSTRACT

Microbial lipids, which are also known as single cell oils (SCO), are produced by oleaginous microorganisms including oleaginous bacteria, yeast, fungus and algae through converting carbohydrates into lipids under certain conditions. Due to its unique environment having extremely low temperature and anoxia, the Tibetan Plateau is amongst the regions with numerous rare ecotypes such as arid desert, salt marsh, alpine permafrost, hot spring, and lawn. By using a rapid, convenient screening method, we identified 31 strains of oleaginous microorganisms from different habitats in the Tibetan Plateau, which include wetlands, lawn, hot spring, alpine permafrost, and saline-alkali soil. Molecular identity analysis showed that they belong to 15 different species, 7 of which are reported for the first time as lipid-producing microorganisms, that is, Cladosporium sp., Gibberella fujikuro, Ochrobactrum sp., Plectosphaerella sp., Tilletiopsis albescens, Backusella ctenidia, and Davidiella tassiana. The distribution of the oleaginous microorganisms varies with habitats. 11 strains were found in hot spring (35.5%), 10 in farmland (32.3%), 6 in lawn (19.4%), 2 in sand (6.4%), 1 in wetland (3.2%), and 1 in permafrost (3.2%). Carbon utilization analysis indicated that most of these filamentous fungi can use xylose and carboxymethyl cellulose (CMC) as carbon source, where Backusella ctenidia, Fusarium sp. and Gibberella fujikuroi have the strongest capability.


Subject(s)
Carboxymethylcellulose Sodium , Fermentation , Fungi/genetics , Fungi/isolation & purification , In Vitro Techniques , Yeasts/genetics , Yeasts/isolation & purification , Plant Oils/analysis , Polymerase Chain Reaction/methods , Xylose/analysis , Enzyme Activation , Methodology as a Subject
3.
Braz. j. microbiol ; 42(3): 1141-1146, July-Sept. 2011. ilus, tab
Article in English | LILACS | ID: lil-607546

ABSTRACT

A preliminary study on xylitol production by Candida guilliermondii in sorghum straw hemicellulosic hydrolysate was performed. Hydrolysate had high xylose content and inhibitors concentrations did not exceed the commonly found values in other hemicellulosic hydrolysates. The highest xylitol yield (0.44 g/g) and productivity (0.19 g/Lh) were verified after 72 hours.


Subject(s)
Candida , Fermentation , Hydrolases/analysis , Sorghum/enzymology , Xylitol/analysis , Xylose/analysis , Enzyme Activation , Methods , Plant Preparations/analysis , Methods
4.
Rev. colomb. biotecnol ; 13(1): 52-57, jul. 2011. graf
Article in Spanish | LILACS | ID: lil-600573

ABSTRACT

La levadura Candida guilliermondii es objeto de estudio debido a su capacidad de producir xilitol aprovechando compuestos hemicelulósicos ricos en xilosa, dado esto, la cepa Candida guilliermondii aislada del fruto del corozo chiquito (Bactris guineensis) fue usada en este estudio con el fin de evaluar su capacidad para producir xilitol sobre un sustrato hidrolizado de cascarilla de arroz. El objetivo de este trabajo fue determinar los parámetros fermentativos como producción de xilitol, productividad volumétrica (Qp) y rendimiento de sustrato en producto (Yp/s) durante la fermentación con la cepa nativa Candida guilliermondii. Se emplearon 200 ml de medio de cultivo hidrolizado de cascarilla de arroz, el cual contenía una concentración de xilosa de 27,5 g/L. La fermentación se llevó a cabo bajo las siguientes condiciones: temperatura 30 ºC, pH del medio 5,8, agitación 120 rpm e inóculo adaptado de 3 g/L. Los resultados mostraron que después de 120 horas de fermentación se obtuvieron 2,6 g/L de xilitol con productividad volumétrica (Qp) de 0,02 g/L-h y rendimiento de sustrato en producto (Yp/s) de 0,13 g/g. De esta manera, la cepa nativa Candida guilliermondii, aislada del fruto de Corozo chiquito (Bactris guineensis), produjo xilitol bajo condiciones específicas de fermentación.


The yeast Candida guilliermondii has been studied due to its ability to produce xylitol in xylose-rich hemicellulosic compounds, Candida guilliermondii strain isolated from the fruit of Corozo chiquito (Bactris guineensis) was used in this study to assess their ability to xylitol production on these substrates. The aim of this study was to determine the fermentation parameters such as xylitol production, volumetric productivity (Qp) and yield of xylitol production (Yp/s) during fermentation with the native strain Candida guilliermondii. Was used 200 ml of culture medium rice husk hydrolysate, which contained a xylose concentration of 27.5 g/L. The fermentation was carried out under the following conditions: temperature 30 ºC, pH of 5.8, agitation 120 rpm and adapted inoculum of 3 g/L. The results showed that after 120 hours of fermentation 2.6 g / L of xylitol was achieved with volumetric productivity (Qp) 0.02 g/L-h and 0.13 g/g yield of xylitol production (Yp/s). The native strain Candida guilliermondii, isolated from the fruit of Corozo chiquito (Bactris guineensis) produced xylitol fermentation under specific conditions.


Subject(s)
Fermentation/physiology , Fermentation/genetics , Fermentation/immunology , Xylose/analysis , Xylose/analogs & derivatives , Xylose/classification , Xylose/physiology , Yeast, Dried/analysis , Yeast, Dried/classification , Yeast, Dried/pharmacology , Yeast, Dried/genetics , Yeast, Dried/supply & distribution , Yeast, Dried/chemistry , Yeast, Dried/chemical synthesis
5.
Braz. j. microbiol ; 39(2): 333-336, Apr.-June 2008. graf, tab
Article in English | LILACS | ID: lil-487714

ABSTRACT

Wheat straw hemicellulosic hydrolysate was used for xylitol bioproduction. The use of a xylose-containing medium to grow the inoculum did not favor the production of xylitol in the hydrolysate, which was submitted to a previous detoxification treatment with 2.5 percent activated charcoal for optimized removal of inhibitory compounds.


Hidrolisado hemicelulósico de palha de trigo foi utilizado para a bioprodução de xilitol. O uso de meio contendo xilose para crescer o inóculo não favoreceu a produção de xilitol no hidrolisado, que foi submetido a um tratamento prévio de destoxificação com 2.5 por cento de carvão ativo para remoção otimizada de compostos inibitórios.


Subject(s)
Candida/growth & development , Candida/isolation & purification , Carbon/analysis , Enzyme Inhibitors , Hydrolases/analysis , In Vitro Techniques , Industrial Microbiology , Xylose/analysis , Culture Media , Fermentation , Methods , Triticum
SELECTION OF CITATIONS
SEARCH DETAIL